KWIVER Documentation

Release 1

Kitware, Inc.

Sep 14, 2017

Contents

1 Introduction
1.1 Video Analytics Toolchain

1.2 SMQTK/C++Bridge

2 Installing Kwiver

2.1 Install Dependencies
22 InstallFletch
23 Install Kwiver

3 Indices and tables

11

....................... 11

KWIVER Documentation, Release 1

Contents:

Contents 1

KWIVER Documentation, Release 1

2 Contents

CHAPTER 1

Introduction

The Kitware Image and Video Exploitation and Retrieval (KWIVER) toolkit is a collection of software tools designed
to tackle difficult image and video analysis problems and other related challenges. KWIVER is an ongoing effort to
transition technology developed over multiple years by Kitware’s computer vision group to the open source domain in
order to further research, collaboration, and product development.

KWIVER contains the following components.

‘VITAL‘_ A core library of abstractions and data types used by various KWIVER components. Major elements of
VITAL are: - Basic data types used throughout Kwiver. - Provides abstract algorithm interfaces for implemen-
tations in the ARROWS component. - Configuration support library providing a common approach to run time
configuration of the components. - An OS abstraction layer that provides system services in a platform inde-
pendent manner. - flexible logging support that can interface to different logging back ends. - General purpose
plugin architecture.

‘Stream Processing Toolkit (sprokit)‘_ Sprokit is the “Stream Processing Toolkit”, a library aiming to make pro-
cessing a stream of data with various algorithms easy. It supports divergent and convergent data flows with
synchronization between them, connection type checking, all with full, first-class Python bindings.

Sprokit also contains a set of processes and example pipelines that support basic operations such as image and
video input and display, wrappers for common algorithms.

‘ARROWS*‘_ ARROWS is an open source C++ collection of algorithms for making measurements from aerial video.
Initial capability focuses on estimating the camera flight trajectory and a sparse 3D point cloud of the scene.

Additionally, a separate repository, Fletch, is a CMake based project that assists with acquiring and building common
Open Source libraries useful for developing video exploitation tools.

There is no single “correct” way to build KWIVER. Rather, depending on your use case you will configure and build
KWIVER in ways that make the tools and libraries you require avaialable to you. In this documentation we’ll detail
and document some of the more common and useful usecases.

Video Analytics Toolchain

Coming Soon!

KWIVER Documentation, Release 1

SMQTK/C++ Bridge

The SMQTK C++ Bridge is a mechanism that allows C++ based programs to make calls to the Python based SMQTK
project. In particular, it allows a C++ program to call the SMQTK descriptor engine by providing an image as input
and receiving a feature vector in return.

The bridge is based on Kitware’s KWIVER project. In particular it uses the data types and core services provided
by KWIVER’s VITAL project and the pipeline processing (including Python compute nodes) provided by SMQTK’s
Sprokit project. The Block Diagramm of the SMQOTK/C++ Bridge shows the structure of the solution.

C/C++ Application

SMQTK C/C++ Library (libSMQTK_Descriptor)

Descriptor API (e.g. Extract_ SMQTK(...))

SproKit

SMQTK Pipeline Node

SMQTK

Fig. 1.1: Block Diagramm of the SMQTK/C++ Bridge

The KWIVER repository and its associated build framework takes care of building VITAL and Sprokit once it’s
properly configured. Also, in order to build KWIVER, you must build some of the third party dependencies maintained
by Kitware’s Fletch project (a repository that is used to manage the build of a variety of computer vision and machine
learning tools).

This document will help you configure Fletch and KWIVER so that you can use them with SMQTK and Python. It
will also discuss the C++/SMQTK bridge and how you can integrate it into your projects.

The instructions assume that you will set up a directory structure similar to the SMOTK/C++ Bridge Source Organi-
zation shown.

These projects are interdependent, so you’ll want to fetch the repositories and checkout the correct branch for all of
them first.

4 Chapter 1. Introduction

KWIVER Documentation, Release 1

T =

Fig. 1.2: SMQTK/C++ Bridge Source Organization

Getting the Code

Fletch

In the Fletch directory:

git clone https://github.com/Kitware/fletch.git source
cd source
git checkout master

KWIVER

In the KWIVER directory:

git clone https://github.com/kitware/kwiver.git source
cd source
git checkout master

SMQTK

In the SMQTK directory:

git clone https://github.com/Kitware/SMQTK.git source
cd source
git checkout v0.2

CAFFE

In the CAFFE directory:

git clone https://github.com/BVLC/caffe.git source

cd source

git checkout rc2

./scripts/download_model_binary.py models/bvlc_reference_caffenet
./data/ilsvrcl2/get_ilsvrc_aux.sh

For CAFFE, in addition to obtaining the source code, we’re fetching some pre-trained models that we can use.

1.2. SMQTK/C++ Bridge 5

KWIVER Documentation, Release 1

Setting up a Python Environment

In order to use the SMQTK/C++ bridge, you must have a Python environment on your system. We recommend
installing the Miniconda environment from Continuum — an open source Python environment that makes it very easy
to set up Python for scientific computing.

Make sure that the Miniconda python command is the first one in your PATH:

export PATH=~/.miniconda/bin:${PATH}

We will also need to create an SMQTK conda environment in which we will run SMQTK:

conda create -n smgtk —--file smgtk/source/requirements.conda.txt
source activate smgtk

pip install -r smgtk/source/requirements.pip.txt

pip install scikit-image

pip install protobuf

Building the Code

Fletch

Note: It is important that only the Miniconda environment (and not the smqtk environment is active when building
fletch. Run source deactivate to be sure.)

From your Fletch directory:

mkdir build

cd build
cmake -C ../source/sprokit/processes/examples/call_SMQTK pipeline/fletch-precache.
—cmake ../source/

This will configure Fletch to build the projects that KWIVER needs to build properly for use with SMQTK/C++
bridge.

To actually build Fletch execute the command:

cmake —-build .

(Note that there is period (.) at the end of that command)

KWIVER

Note: It is important that the SMQTK Miniconda environment is active when building fletch. Run source
activate smgtk to be sure.

What follows are the steps required to build KIWVER to provide the SMQTK/C++ bridge
In the KWIVER directory:

6 Chapter 1. Introduction

http://conda.pydata.org/miniconda.html
https://www.continuum.io/

KWIVER Documentation, Release 1

source activate smqgtk
mkdir build
cd build

To configure the build:

cmake -Dfletch_DIR:PATH=../../fletch/build/ -C ../source/sprokit/processes/examples/
—call_SMQTK_pipeline/kwiver—-precache.cmake ../source/

Verify that the PYTHON specifications are correct (assuming you installed miniconda in ~/miniconda):

PYTHON_EXECUTABLE ~/miniconda/bin/python
PYTHON_INCLUDE_DIR ~/miniconda/include/python2.7
PYTHON_LIBRARY ~/miniconda/lib/libpython2.7.so

And finally, build KWIVER:

make
make install

CAFFE

One of the feature’s of SMQTK is that it can use a CAFFE based CNNN as a descriptor. In general, you simply need
to build CAFFE with it’s Python bindings turned on:

mkdir build

cd build

cmake —-DBOOST_ROOT:PATH=../../fletch/build/install/ -DOpenCV_DIR:PATH=../../fletch/
—build/install/share/OpenCV/ ../source/

make

make install

SMQTK

From the SMQTXK directory:

mkdir build
cd build
cmake ../source

Testing the Code

Set your PATH to include the new projects. The following commands will set the environment so the examples can be
run:

source kwiver/build/install/setup_KWIVER.sh
source smgtk/build/setup_env.build.sh
export PYTHONPATH=S${PWD}/caffe/build/install/python:${PYTHONPATH}

To test that the the SMQTK/C++ bridge is working, we will run the SMQTK_Descriptor_test application. This
application is an example C++ application that accepts a configuration file to specify the location of your CAFFE
installation model, files and GPU configuration and a single image or list of images and submit that image (or images)
to SMQTK to have CAFFE compute the descriptor. The application does nothing with the descriptor other than print

1.2. SMQTK/C++ Bridge 7

KWIVER Documentation, Release 1

the first 50 elements. This is a sample program only. You may wish to read the source code for the program in
kwiver/source/examples/call_SMQTK_pipeline to see how you can adapt this technique to your own
programs.

To use the application, you’ll need to provide it with a configuration file that tells it what descriptor to use.

Here is an example configuration file that uses SMQTK’s CaffeDesriptorGenerator to run the ImageNet CNN and use
the 7th layer as a descriptor:

{

"CaffeDescriptorGenerator": {

"batch_size": 256,

"data_layer": "data",

"gpu_device_id": 0,

"image_mean_filepath": "/path/to/caffe/source/data/ilsvrcl2/imagenet_mean.
—binaryproto",

"load_truncated_images": true,

"network_is_bgr": true,

"network_model_filepath": "/path/to/caffe/source/models/bvlc_reference_
—caffenet/bvlc_reference_caffenet.caffemodel",

"network_prototxt_filepath": "/path/to/caffe/source/models/bvlc_reference_
—caffenet/deploy.prototxt",

"return_layer": "fc7",

"use_gpu": false

}I
"type": "CaffeDescriptorGenerator"

}

The command to run the test application is as follows (all one line, run from the kwiver/build directory):

LD_PRELOAD=~/miniconda/envs/smqtk/lib/libpython2.7.s0.1.0 Jexam-
ples/call_SMQTK_pipeline/SMQTK_Descriptor_test my-caffe-config ../source/examples/cat.jpg

Note: The “LD_PRELOAD” variable setting is required to make sure that sprokit does not try to use the system
python instead of the SMQTK python environment you created. We will be working to make this unecessary as soon
as possible.

When the application runs, it will eventually print out lines that look like this (after many log messages):

Descriptor size: 4096
00O0O0OGO OGO O 3.53588 0000 3.3475 0000 1.67483 0 000 0O0O0O0 7.86536 000 0 O
-0 0000000000O0OO0OO0OOO0OO0O

Which represents the first 50 elements of the returned feature vector. If all of the elements are the value 0.223, then
something went wrong and the feature vector was not run

If you wish to use a different model, say AlexNet, make sure yourun . /scripts/download_model_binary.
py models/bvlc_alexnet in the Caffe source directory and then you can create a different configuration
file that specifies /path/to/caffe/source/models/bvlc_alexnet/bvlc_alexnet.caffemodel
for network_model_filepath and /path/to/caffe/source/models/bvlc_alexnet/deploy.
prototxt for network_prototxt_filepath.

Using the SMQTK/C++ Bridge in Your Code

The C++ interface to SMQTK descriptors is through the SMQTK_Descriptor class as defined in the include file
SMQTK_Descriptor.h.

8 Chapter 1. Introduction

https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet

KWIVER Documentation, Release 1

The SMQTK descriptor API is built as part of kwiver and is available in the library 1ibSMQTK_Descriptor.
so. You will need to add this to your build instructions as —1SMQTK_Descriptor or in an equivalent manner
appropriate for your build system.

The class provides a single method to apply the descriptor to an image and return the descriptor vector, which is
described as follows:

std::vector< double > ExtractSMQTK(cv::Mat cv_img, std::string consté& config_file);

cv_img An image in OpenCV format
config_file The name of the SMQTK descriptor configuration file in JSON format. See Testing the Code for details.

The ExtractSMQTK() method is synchronous in that it will return with the descriptor vector even though the descriptor
calculation may be multi-threaded.

The source code for the call_SMQTK_pipeline provides an example of how to use this call in your own programs:

Include the file SMQTK_Descriptor.h in the source code to get the interface to the SMQTK_Descriptor class, as shown
below:

#include "SMQTK_Descriptor.h"

The following two source statements implement and apply the descriptor:

kwiver::SMQTK_Descriptor des; // Create object
std::vector< double > results = des.ExtractSMQTK(img, file_name);

The inputs are the OpenCV format image and the name of the descriptor configuration file. The output is the descriptor
vector of doubles.

A sample program is provided in the source file SMQTK_Descriptor_test.cxx which serves as a test of the API and an
example of how it is used. The operation of this test program is discussed above.

1.2. SMQTK/C++ Bridge 9

KWIVER Documentation, Release 1

10 Chapter 1. Introduction

CHAPTER 2

Installing Kwiver

These instructions are designed to help build Kwiver on a fresh machine. They were written for and tested on Ubuntu
16.04 Desktop version. Other Linux machines will have similar directions, but some steps (particularly the dependency
install) may not be totally identical.

Install Dependencies

Some of the dependencies required for Kwiver can be installed with one quick and easy instruction with no config-
uration required. Different Linux distributions may have different packages already installed, or may use a different
package manager than apt, but even on Ubuntu this should help to provide a starting point.

sudo apt-get install git zIib1g-dev libcurl4-openssl-dev libexpatl-dev dh-autoreconf liblapack-dev libxt-dev
sudo apt-get build-dep libboost-all-dev qt5-default

Install CMAKE

The version of cmake you currently get with apt is too old to use for kwiver, so you need to do a manual install. Go
to the cmake website, https://cmake.org/download, and download the appropriate binary distribution (for Ubuntu, this
would be something like cmake-3.6.1-Linux-x86_64.sh, depending on version). Download the source code, cmake-
3.6.1.tar.gz (or just download and use the installer for windows). To untar and build the source, use the following set
of commands. Keep in mind that if you’re not using version 3.6.1, you’ll need to update the version number to match
your download.

cd ~/Downloads

tar zxfv cmake-3.6.1.tar.gz

cd cmake-3.6.1

/bootstrap —system-curl —no-system-libs
make

sudo make install

11

KWIVER Documentation, Release 1

sudo In -s /usr/local/bin/cmake /bin/cmake

These instructions build the source code into a working executable, installs the executable into a personal directory,
and then lets the operating system know where that directory is so it can find cmake in the future.

Install Fletch

Fletch is a CMake driven build that will help configure and install a series of component packages necessary for
Kwiver, like Eigen and Boost. Navigate to the directory where you want to put your source code and builds. I
personally like to use ~/Work and then set up a new directory for each repo. With all dependencies for Fletch installed
in the last couple of steps, Fletch should build without any issues.

mkdir fletch

cd fletch

git clone https://github.com/kitware/fletch. git

mkdir build

cd build

cmake -Dfletch_ENABLE_ALL_PACKAGES:bool=on ../fletch

make

Install Kwiver

After Fletch is built, you should have everything necessary to build Kwiver. Navigate back to the directory you want
to put Kwiver in (if you followed the directions above, the command to return is cd ../..). In the cmake step, make sure
to fill in your Fletch build directory so Kwiver knows where to find its dependencies. For example, I would use cmake
-Dfletch_DIR:path=/home/dave/Work/fletch/build ../kwiver.

mkdir kwiver

cd kwiver

git clone https://github.com/kitware/kwiver. git

mkdir build

cd build

cmake -Dfletch_DIR:path=<fletch_build_directory> ../kwiver

make

12 Chapter 2. Installing Kwiver

CHAPTER 3

Indices and tables

* genindex
* modindex

e search

13

	Introduction
	Video Analytics Toolchain
	SMQTK/C++ Bridge

	Installing Kwiver
	Install Dependencies
	Install Fletch
	Install Kwiver

	Indices and tables

