KWIVER Documentation

Release 1

Kitware, Inc.

Oct 27, 2017

Contents

1 Introduction

2 Architecture
Vital Architecture

2.1

2.1.1

2.1.2
2.13

3

5

.. 5

Tmages e e e e e e e e 5
2111 TImage Type o o v i e e e e e e e 5
2.1.1.1.1 Public Functions 6
21,12 Time Stamp e e 9
2.1.1.2.1 Public Functions e 9

2.1.1.3 TImage Container Type v i i i e e e e e e e e e 11
2.1.1.3.1 Public Functions e 11
2.1.1.4 TImageI/O Algorithm 11
2.1.1.4.1 PublicFunctions 12
2.1.1.4.2 Public Static Functions, 12

2.1.1.5 Image Filter Algorithm 13
2.1.1.5.1 Public Functions 13
2.1.1.5.2 Public Static Functions 13

2.1.1.6 SplitImage Algorithm 13
2.1.1.6.1 Public Functions 14
2.1.1.6.2 Public Static Functions, 14

2.1.1.7 Code Example e e e e e e 14
Detections e e e e e e e e e e 17
Vital Doxygen oL e e e e e e 17
2031 TYPES .« o o e e e e e e e e e e 17
2.1.32 Other e e e e e e 17
213210 Tmage o . e e e e e e e e e e e e 17
2.1.3.2.2 PublicFunctions 17
2.1.3.2.3 PublicFunctions 20
2.1.3.24 Detections e e e e e e e e e 21
2.1.3.2.5 PublicFunctions 21
2.1.3.2.6 Public Functions e 22
21327 Unnamed Group o v v v vt i e e e e e e e e 25
2.1.3.2.8 PublicFunctions 25
2.1.3.29 Other e e 27
2.1.3.2.10 Public Functions 28
2.1.3.2.11 Public Functions e 29

2.1.3.2.12 Public Functions e e 30
2.1.3.2.13 Public Functions e 30
2.1.3.2.14 Public Static Attributes 31
2.1.3.2.15 Public Functions 31
2.1.3.2.16 Public Functions e 32
2.1.33 Algorithms oL e 32
2.1.33.1 0 Base TYPes . . v v v v i e e e e e e e e e 32
2.1.3.3.2 PublicFunctions e e 33
2.1.3.3.3 Public Static Functions 33
2.133.4 PublicTypes. 35
2.1.3.3.5 PublicFunctions 35
2.1.3.3.6 Public Static Functions, 35
2.1.3.3.7 Functionality e 36
2.1.3.3.8 PublicFunctions 36
2.1.3.3.9 Public Static Functions 37
2.1.3.3.10 PublicTypes o o o e 37
2.1.3.3.11 Public Functions e 37
2.1.3.3.12 Public Static Functions, 37
2.1.3.3.13 Public Functions e 38
2.1.3.3.14 Public Static Functions 38
2.1.3.3.15 Public Functions 38
2.1.3.3.16 Public Static Functions, 39
2.1.3.3.17 Public Functions e 39
2.1.3.3.18 Public Static Functions 39
2.1.3.3.19 Public Functions 40
2.1.3.3.20 Public Static Functions 40
2.1.3.3.21 Public Functions 40
2.1.3.3.22 Public Static Functions 40
2.1.3.3.23 Public Functions e e 41
2.1.3.3.24 Public Static Functions 41
2.1.3.3.25 PublicFunctions e 41
2.1.3.3.26 Public Static Functions, 42
2.1.3.3.27 Public Functions 42
2.1.3.3.28 Public Static Functions, 43
2.1.3.3.29 Public Functions e 43
2.1.3.3.30 Public Static Functions 44
2.1.3.3.31 PublicFunctions 44
2.1.3.3.32 Public Static Functions, 45
2.1.3.3.33 Public Functions e 45
2.1.3.3.34 Public Static Functions 45
2.1.3.3.35 Public Functionso 45
2.1.3.3.36 Public Functions 46
2.1.3.3.37 Public Static Functions, 47
2.1.3.3.38 Public Functions e 47
2.1.3.3.39 Public Static Functions, 48
2.1.3.3.40 Public Functions e 49
2.1.3.3.41 Public Static Functions 49
2.1.3.3.42 Public Functions e 50
2.1.3.3.43 Public Static Functions, 50
2.1.3.3.44 Public Functions e 51
2.1.3.3.45 Public Static Functions, 52
2.1.3.3.46 Public Functions 53
2.1.3.3.47 Public Static Functions 53
2.1.3.3.48 Public Functions e 53

22

2.1.3.3.49 Public Static Functions e 54

2.1.3.3.50 Public Functions e 54
2.1.3.3.51 Public Static Functions 55
2.1.3.3.52 Public Functions 55
2.1.3.3.53 Public Static Functions, 55
2.1.3.3.54 Public Functions e e 55
2.1.3.3.55 Public Static Functions, 55
2.1.3.3.56 Public Functions e 56
2.1.3.3.57 Public Static Functions 56
2.1.3.3.58 Public Functions 56
2.1.3.3.59 Public Static Functions, 57
2.1.3.3.60 Public Functions e 57
2.1.3.3.61 Public Static Functions, 57
2.1.3.3.62 PublicTypes o o v i e e e e 58
2.1.3.3.63 Public Functions 58
2.1.3.3.64 Public Static Functions, 58
2.1.3.3.65 Public Functions 59
2.1.3.3.66 Public Static Functions 59
2.1.3.3.67 Public Functions 59
2.1.3.3.68 Public Static Functions 60
2.1.3.3.69 Public Functions 60
2.1.3.3.70 Public Static Functions, 60
2.1.3.3.71 Public Functions e 61
2.1.3.3.72 Public Static Functions 61
2.1.3.3.73 Public Functions e 61
2.1.3.3.74 Public Static Functions, 62
2.1.3.3.75 Public Functions e 62
2.1.3.3.76 Public Static Functions, 63
2.1.3.3.77 Public Functions 63
2.1.3.3.78 Public Static Functions 64
2.1.3.3.79 Public Functions e 64
2.1.3.3.80 Public Static Functions, 65
2.1.3.3.81 Public Functions e 65
2.1.3.3.82 Public Static Functions 65
2.1.3.3.83 Public Static Functions 65
2.1.3.3.84 Public Functions 66
2.1.3.3.85 Public Static Functions 69

Arrow Architecture e e e e e e e e e e e e 69
22,1 COTe . . o ot e e e e e e e e e e e e e 69
222 BUMOUL o ot e 69
223 CeIES . v v v i e 69
2.2.3.1 Bundle Adjust Algorithm oL 69
2.23.1.1 PublicFFunctions 69
2.23.1.2 PublicFunctions 70
2.23.1.3 PublicMembers e e 70

2.2.3.2 Optimize Cameras Algorithm 71
22321 PublicFunctions 71
2.23.2.2 PublicFunctions 72
22323 PublicMembers e e 72

2.2.3.3 Camera Position Smoothness Class 72
2.2.3.3.1 PublicFunctions 72
2.2.3.3.2 Public Static Functions 73
2.2.3.4 Camera Limit Forward Motion Class 73
2.23.4.1 PublicFunctions 73

22342 PublicMembers e 73

2.2.34.3 Public StaticFunctions o oo 73

2.2.3.5 Distortion Poly Radial Class 73
2.2.3.5.1 Public Static Functions 0 oL 74

2.2.3.6 Distortion Poly Radial Tangential Class 74
2.2.3.6.1 Public Static Functions oo 74

2.2.3.6.2 Distortion Ratpoly Radial Tangential Class 74

2.2.3.6.3 Public Static Functions L oo 74

2237 Create CostFunc Factory 75

224 Darknet L e e e e e e 75
22401 FAQ . . o e 75

225 Matlab. . . oL e 75
226 0penCV e e e e e e 75
2.2.6.1 Algorithm Configuration 76
22.6.1.1 Imagel/O 76

22.6.1.2 SplitImage 76

227 Projd .o e 76
228 UUID . . . e e e e 76
229 VIiSCL . . . e e e e 76
2210 VXL . .o e e e e 76
2.2.10.1 Algorithm Configuration i 76
22.10.1.1 Imagel/O o e 76

2.2.10.1.2 SplitImage e e 76

2.3 Sprokit Architecture e e e e e e e e e e e e 76
2.3.1 Getting Started with sprokit. L. L 77
2.3.1.1 PythonProcesses 80

232 PrOCESS . v v v it e e e e 80
2.3.2.1 detected_object_outputl e e e 80
2.3.2.2 draw_detected_object_boxes e e 81
23221 PipefileUsage e 81

232.2.1.1 Pipefileblock 81

2.3.2.2.1.2 Pipefileconnectionso 81

2.3.2.2.1.3 The following Input ports willneedtobeset 81

2.3.22.1.4 The follwing Output ports are available from this process 81

23222 ClassDescription oo v i it e e 81

2.3.2.23 PublicFunctions 82

2.3.2.3 frame_list_input L. e 82
2.3.2.3.1 Configuration e e 83

2.3.2.3.1.1 InputPorts e 83

2.3.23.1.2 OutputPorts 83

23232 PipefileUsage L 83

2.3.2.3.2.1 Pipefileblock 83

2.3.2.3.22 Processconnections 84

2.3.2.3.2.3 The following Input ports willneedtobeset 84

232324 The following Output ports willneedtobeset 84

23233 ClassDescription oo it 84

2.3.24 image object_detectoro 84
2325 iMage_VIEWETt i i i e e e e e e e e e e 84
2.3.2.5.1 Configurationo e e 84

23252 InputPorts. e e e 85

23253 OutputPorts e e 85

23254 PipefileUsage L 85

232541 Pipefileblock 85

2.3.2.54.2 Pipefileconnectionso 85

233
234
235

23.6

2.3.7
238

Tools

2.3.2.54.3 The following Input ports will needtobeset

2.3.2.54.4 The follwing Output ports are available from this process

23255 ClassDescription e
2.3.2.6 image WIIter e e e e e e
How To Make a Process o e
Plugins o e
Pipeline design L e e e e e e e e e e
2351 OVEIVIEW . . . o o it e e e e e e e e e
2.3.52 TypeSafety e e e e
2.3.53 INtroSpection o . Lol e e e e e e e e e e e e e e e
2.3.54 Threadsafety
2355 ErrorHandling e e e
235.6 Control Flow e
2357 DataFlow e e e e e
2.3.5.8 Ports ... oL e e e e e e
2359 Packets e e
2.3.5.10 Pipeline Execution e e e e e e e
Pipeline Declaration Files e
2.3.6.1 Configuration Entries e
2.3.6.1.1 Configuration entry attributes 000,
2.3.6.2 Macro Substitution e e e
23.6.2.1 MacroProviders
23.6.22 LOCAL Macro Provider
23.6.23 ENV MacroProvider
2.3.6.24 CONFIG MacroProvider
2.3.6.25 SYSENV MacroProvider

2.3.6.3 Block Specification e e
2.3.64 Including Files e e e e
2.3.6.5 Relativepath Modifier e
2.3.6.6 Configuration Section o
2.3.6.6.1 Examples e

2.3.6.7 Process definition Section oL
2.3.6.7.1 Specification. e e e e e e
2.3.6.7.2 Examples e e e e
2.3.6.7.3 Non-blocKing proCesses v v v v v v i vt e
2.3.6.7.4 Staticportvalues
2.3.6.7.5 Instrumenting Processes.

2.3.6.8 Connection Definition e
2.3.6.8.1 Examples e e e
2.3.6.9 Pipeline Edge Configuration. e
2.3.6.10 Scheduler configuration oL
2.3.6.10.1 Exampleo e e e
2.3.6.11 Clusters Definition File
2.3.6.11.1 configspecifier
2.3.6.11.2 Inputmapping o v vt i e e e e e e e e e e
23.6.11.3 Outputmapping oot e e e
Pipeline Example L e e
How ToMake a Pipeline e

3.1 Process Explorer e e e e e e
3.2 Pipeline Runner e

Tutorials

99
99
99

101

4.1 Fundamental Types and Algorithms i i e e e e 101

4.2 Sprokit Pipelines e e e e e e e e 101
42.1 HelloWorld e 102

422 SimpleImage e 102

423 Simple Video e 103

424 HoughDetection i e 103

425 DarknetDetection e e e 103

4251 Setup e e e 103

4252 EXECUHONttt e e e e e e 104

42521 ImageDetection 104

42522 VideoDetection 105

4.2.6 Image Stabilization e e e e e e e e e e e 105

5 Extending Kwiver 107
5.1 Creating anew Algorithm e 107

5.2 Adding Algorithm Implementations L e 107
5.2.1 Howtoconfigure an Algorithm L 107

5.2.2 How to Instantiate an Algorithm L o 107

5.3 How to Wrap an Algorithm withaProcess 107

6 Indices and tables 109

vi

KWIVER Documentation, Release 1

Contents:

Contents 1

KWIVER Documentation, Release 1

2 Contents

CHAPTER 1

Introduction

The KWIVER toolkit is a collection of software tools designed to tackle challenging image and video analysis prob-
lems and other related challenges. Recently started by Kitware’s Computer Vision and Scientific Visualization teams,
KWIVER is an ongoing effort to transition technology developed over multiple years to the open source domain to
further research, collaboration, and product development. KWIVER is a collection of C++ libraries with C and Python
bindings and uses an permissive BSD License.

Visit the repository on how to get and build the KWIVER code base

https://github.com/Kitware/kwiver

KWIVER Documentation, Release 1

4 Chapter 1. Introduction

CHAPTER 2

Architecture

One of the primary design goals of KWIVER is to make it easier to pull together algorithms from a wide variety
of third-party, open source image and video processing projects and integrate them into highly modular, run-time
configurable systems.

This goal is achieved through the three main components of KWIVER: Vital, Arrows, and Sprokit.

Vital Architecture

Vital is the core of KWIVER and is designed to provide data and algorithm abstractions with minimal library depen-
dencies. Vital only depends on the C++ standard library and the header-only Eigen library. Vital defines the core data
types and abstract interfaces for core vision algorithms using these types. Vital also provides various system utility
functions like logging, plugin management, and configuration file handling. Vital does not provide implementations
of the abstract algorithms. Implementations are found in Arrows and are loaded dynamically, by vital, at run-time via
plugins.

The design of KWIVER allows end-user applications to link only against the Vital libraries and have minimal hard
dependencies. One can then dynamically add algorithmic capabilities, with new dependencies, via plugins without
needing to recompile Vital or the application code. Only Vital is built by default when building KWIVER without
enabling any options in CMake. You will need to enable various Arrows in order for vital to instantiate those various
implementations.

The Vital API is all that applications need to control the execute any KWIVER algorithm arrow. In the following
sections we will breakdown the various the algorithms and data types provided in vital based on their functionality.

Images
Image Type

class kwiver::vital: :image
The representation of an in-memory image.

http://eigen.tuxfamily.org/

KWIVER Documentation, Release 1

Images share memory using the image_memory class. This is effectively a view on an image.

Subclassed by kwiver::vital::image_of< uint16_t >, kwiver::vital::image_of< T >

Public Functions

image (const image_pixel_traits &pr = image_pixel_traits ())
Default Constructor.
Parameters

» pt: Change the pixel traits of the image

image (size_t width, size_t height, size_t depth = 1, bool interleave = false, const image_pixel_traits &pt
= image_pixel_traits ())
Constructor that allocates image memory.

Create a new blank (empty) image of specified size.

Parameters
* width: Number of pixels in width
* height: Number of pixel rows
* depth: Number of image channels
* pt: data type traits of the image pixels

* interleave: Set if the pixels are interleaved

image (const void *first_pixel, size_t width, size_t height, size_t depth, ptrdiff_t w_step, ptrdiff_t h_step,
ptrdiff_t d_step, const image_pixel_traits &pt = image_pixel_traits ())
Constructor that points at existing memory.

Create a new image from supplied memory.

Parameters

e first_pixel: Address of the first pixel in the image. This does not have to be the lowest
memory address of the image memory.

* width: Number of pixels wide

* height: Number of pixels high

* depth: Number of image channels

* w_step: pointer increment to get to next pixel column
* h_step: pointer increment to get to next pixel row

* d_step: pointer increment to get to next image channel

* pt: data type traits of the image pixels

image (const image_memory_sptr &mem, const void *first_pixel, size_t width, size_t height, size_t
depth, ptrdiff_t w_step, ptrdiff_t h_step, ptrdiff_t d_step, const image_pixel_traits &pt = im-
age_pixel_traits ())
Constructor that shares memory with another image.

Create a new image from existing image.

6 Chapter 2. Architecture

KWIVER Documentation, Release 1

Parameters
* mem: Shared memory block to be used

* first_pixel: Address of the first pixel in the image. This does not have to be the lowest
memory address of the image memory.

* width: Number of pixels wide

* height: Number of pixels high

* depth: Number of image channels

* w_step: pointer increment to get to next pixel column
* h_step: pointer increment to get to next pixel row

* d_step: pointer increment to get to next image channel

* pt: data type traits of the image pixels

image (const image &other)
Copy Constructor.

The new image will share the same memory as the old image
Parameters

* other: The other image.

const image &operator= (const image &other)
Assignment operator.

const image_memory_sptr &memory () const
Const access to the image memory.

image_memory_sptr memory ()
Access to the image memory.

size_t size () const
The size of the image managed data in bytes.

The size of the image data in bytes.
This size includes all allocated image memory, which could be larger than

width*height*depth*bytes_per_pixel.

Note This size only accounts for memory which is owned by the image. If this image was constructed as
a view into third party memory then the size is reported as 0.

const void *first_pixel () const
Const access to the pointer to first image pixel.

This may differ from data() if the image is a window into a large image memory chunk.

void *£irst_pixel ()
Access to the pointer to first image pixel.

This may differ from data() if the image is a window into a larger image memory chunk.

size_t width () const
The width of the image in pixels.

2.1. Vital Architecture 7

KWIVER Documentation, Release 1

size_t height () const
The height of the image in pixels.

size_t depth () const
The depth (or number of channels) of the image.

const image_pixel_traits &pixel_traits () const
The trait of the pixel data type.

ptrdiff tw_step () const
The the step in memory to next pixel in the width direction.

ptrdiff th_step () const
The the step in memory to next pixel in the height direction.

ptrdiff td_step () const
The the step in memory to next pixel in the depth direction.

bool is_contiguous () const
Return true if the pixels accessible in this image form a contiguous memory block.

template <typename T>
T &at (unsigned i, unsigned j)
Access pixels in the first channel of the image.

Parameters
* i: width position (x)
* j: height position (y)

template <typename T>
const T &at (unsigned 7, unsigned j) const
Const access pixels in the first channel of the image.

template <typename T>
T &at (unsigned i, unsigned j, unsigned k)
Access pixels in the image (width, height, channel)

template <typename T>
const T &at (unsigned i, unsigned j, unsigned k) const
Const access pixels in the image (width, height, channel)

void copy_ from (const image &other)
Deep copy the image data from another image into this one.

void set_size (size_t width, size_t height, size_t depth)
Set the size of the image.

If the size has not changed, do nothing. Otherwise, allocate new memory matching the new size.
Parameters

* width: a new image width

* height: a new image height

* depth: a new image depth

8 Chapter 2. Architecture

KWIVER Documentation, Release 1

Time Stamp
class kwiver::vital: :timestamp
Frame time.

This class represents a timestamp for a single video frame. The time is represented in seconds and frame
numbers start at one.

A timestamp has the notion of valid time and valid frame. This is useful when dealing with interpolated times-
tamps. In this case, a timestamp may have a time, but no frame.

When comparing timestamps, they must be from the same domain. If not, then they are not comparable and all
relative operators return false.

If both timestamps have a time, then they are ordered by that value. If both do not have time but both have frame
numbers, they are ordered by frame number. If the timestamps do not have some way of being compared, all
relational operators return false.

Public Functions

timestamp ()
Default constructor.

Created an invalid timestamp.

timestamp (time_t ¢, frame_t f)
Constructor.

Creates a valid timestamp with specified time and frame number.

Parameters
* t: Time for timestamp

» f: Frame number for timestamp

bool is_wvalid () const
Is timestamp valid.

Both the time and frame must be set for a timestamp to be totally valid.

Return true if both time and frame are valid

boolhas_valid time () const
Timestamp has valid time.

Indicates that the time has been set for this timestamp.

Return true if time has been set

bool has_valid_ frame () const
Timestamp has valid frame number.

Indicates that the frame number has been set for this timestamp.

Return true if frame number has been set

2.1. Vital Architecture 9

KWIVER Documentation, Release 1

time_t get_time_usec () const
Get time from timestamp.

The time portion of the timestamp is returned in micro-seconds. The value will be undetermined if the
timestamp does not have a valid time.
See has_valid_time()

Return Frame time in micro-seconds

double get_time_seconds () const
Get time in seconds.

The time portion of the timestamp is returned in seconds and fractions.

Return time in seconds.

frame_t get_frame () const
Get frame number from timestamp.

The frame number value from the timestamp is returned. The first frame in a sequence is usually one. The
frame number will be undetermined if the timestamp does not have a valid frame number set.

See has_valid_frame()

Return Frame number.

timestamp &set_time_usec (time_t)
Set time portion of timestamp.
Parameters

e t: Time for frame.

timestamp &set_time_seconds (double 7)
Set time portion of timestamp.
Parameters

e t: Time for frame.

timestamp &set_frame (frame_t f)
Set frame portion of timestamp.
Parameters

e f: Frame number

timestamp &set_invalid ()
Set timestamp totally invalid.

Both the frame and time are set to invalid

timestamp &set_time_domain_index (int dom)
Set time domain index for this timestamp.

Return Reference to this object.

Parameters

10 Chapter 2. Architecture

KWIVER Documentation, Release 1

¢ dom: Time domain index

std::string pretty_print () const
Format object in a readable manner.

This method formats a time stamp in a readable and recognizable manner suitable form debugging and

logging.

Return formatted timestamp

Image Container Type
class kwiver::vital: :image_container
An abstract representation of an image container.

This class provides an interface for passing image data between algorithms. It is intended to be a wrapper
for image classes in third-party libraries and facilitate conversion between various representations. It provides
limited access to the underlying data and is not intended for direct use in image processing algorithms.

Subclassed by kwiver::arrows::ocv::image_container, kwiver::arrows::vcl::image_container,
kwiver::arrows::vxl::image_container, kwiver::vital::simple_image_container

Public Functions
virtual ~image_container ()

Destructor.

virtual size_t size () const =0
The size of the image data in bytes.

This size includes all allocated image memory, which could be larger than width*height*depth.

virtual size_twidth () const=0
The width of the image in pixels.

virtual size_t height () const=0
The height of the image in pixels.

virtual size_t depth () const =0
The depth (or number of channels) of the image.

virtual image get_image () const =0
Get and in-memory image class to access the data.

virtual video_metadata_sptr get_metadata () const
Get metadata associated with this image.

virtual void set_metadata (video_metadata_sptr md)
Set metadata associated with this image.

Image 1/O Algorithm

Instantiate with:

2.1. Vital Architecture 11

KWIVER Documentation, Release 1

kwiver::vital::algo::image_io_sptr img_io = kwiver::vital::algo::image_io::create ("
—<impl_name>");

Arrow & Configuration | <impl_name> options | CMake Flag to Enable
OpenCV ocv KWIVER_ENABLE_OPENCV
VXL vxl KWIVER_ENABLE_VXL

class kwiver::vital::algo::image_io
An abstract base class for reading and writing images.

This class represents an abstract interface for reading and writing images.
Inherits from kwiver::vital::algorithm_def< image_io >

Subclassed by kwiver::vital::algorithm_impl< image_io, vital::algo::image_io >,
kwiver::vital::algorithm_impl< image_io_dummy, kwiver::vital::algo::image_io >

Public Functions

image_container_sptr 1oad (std::string const &filename) const
Load image from the file.
Return an image container refering to the loaded image
Exceptions
e kwiver::vital::path_not_exists: Thrown when the given path does not exist.

* kwiver::vital::path_not_a_file: Thrown when the given path does not point to a
file (i.e. it points to a directory).

Parameters

* filename: the path to the file the load

void save (std::string const &filename, kwiver::vital::image_container_sptr data) const
Save image to a file.

Image file format is based on file extension.

Exceptions

* kwiver::vital::path_not_exists: Thrown when the expected containing directory of
the given path does not exist.

* kwiver::vital::path_not_a_directory: Thrown when the expected containing di-
rectory of the given path is not actually a directory.

Parameters
» filename: the path to the file to save

* data: the image container refering to the image to write

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

12 Chapter 2. Architecture

KWIVER Documentation, Release 1

Image Filter Algorithm

Instantiate with:

kwiver::vital::algo::image_filter_sptr img_filter = kwiver::vital::algo::image_
—filter::create("<impl_name>");

Arrow & Configuration | <impl_name> options | CMake Flag to Enable
N/A N/A N/A

** Currently there are no arrows implementing the image_filter algorithm **

class kwiver::vital::algo: :image_filter
Abstract base class for feature set filter algorithms.

Inherits from kwiver::vital::algorithm_def< image_filter >

Subclassed by kwiver::vital::algorithm_impl< matlab_image_filter, vital::algo::image_filter >

Public Functions

virtual kwiver::vital::image_container_sptr £ilter (kwiver::vital::image_container_sptr image_data)

=0
Filter a input image and return resulting image.

This method implements the filtering operation. The resulting image should be the same size as the input

image.

Return a filtered version of the input image
Parameters

* image_data: Image to filter.

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

Split Image Algorithm

Instantiate with:

kwiver::vital::algo::split_image_sptr img_filter = kwiver::vital::algo::split_
—image::create ("<impl_name>");

Arrow & Configuration | <impl_name> options | CMake Flag to Enable
OpenCV ocv KWIVER_ENABLE_OPENCV
VXL vxl KWIVER_ENABLE_VXL

class kwiver::vital::algo: :split_image
An abstract base class for converting base image type.

Inherits from kwiver::vital::algorithm_def< split_image >

Subclassed by kwiver::vital::algorithm_impl< split_image, vital::algo::split_image >

2.1. Vital Architecture

13

20

21

22

23

24

25

26

27

28

KWIVER Documentation, Release 1

Public Functions
void set_configuration (kwiver::vital::config_block_sptr config)
Set this algorithm’s properties via a config block.

bool check_configuration (kwiver::vital::config_block_sptr config) const
Check that the algorithm’s currently configuration is valid.

Check that the algorithm’s current configuration is valid.

virtual std::vector<kwiver::vital::image_container_sptr> split (kwiver::vital::image_container_sptr
img) const =0
Split image.

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

Code Example

#include "vital/types/image.h"
#include "vital/types/image_container.h"

#include "vital/algo/image_io.h"
#include "vital/algo/image_filter.h"
#include "vital/algo/split_image.h"

#include "vital/plugin_loader/plugin_manager.h"

// We will be calling some OpenCV code, so we need to include
// some OpenCV related files

#include <opencv2/highgui/highgui.hpp>

#include "arrows/ocv/image_container.h"

void how_to_part_01_images ()
{
// Note that the use of _sptr in objet typing.
// All vital objects (types, algorithms, etc.) provide a shared pointer typedef
// This shared pointer typedef is used through out kwiver to elimate the need of_
—memory ownership managers

// All algorithms are implemented/encapsulated in an arrow, and operate on vital,
—classes

// There are various algorithms (arrows) that kwiver provides that you can use to
—analyze imagry

// In this example, while we will look at a few algorithms, this example highlights,_
—the vital data types used by algorithms

// These vital data types can then be used as inputs or outputs for algorithms.

// The vital data types are a sort of common 'glue' between dispart algorithms,_,
—allowing them to work together.

// Image I/0 algorithms are derived from the kwiver::vital::image_io algorithm_,
—interface

14 Chapter 2. Architecture

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

KWIVER Documentation, Release 1

// While we could instantiate a particular algorithm object directly with this code

// kwiver::arrows::ocv::image_ 1o ocv_10;

// kwiver::arrows::vxl::image_io vxl_1io;

// This would require our application to include specific headers be include in our,
—code

// and require our application to directly link to OpenCV and cause a dependency

// A key feature of the KWIVER architecture is the ability to dynamically load,
—available algorithms at runtime.

// This ability allow you to write your application with a set of basic data types,
—and algorithm interfaces and

// then dynamically replace or reconfigure algorithms at run time without needing,,
—to recompile

// New algorithms can be dropped on disk at and KWIVER can run them

// The first thing to do is to tell kwiver to load up all it's plugins (which,,
—includes all the algorithms)

kwiver::vital::plugin_manager::instance () .load_all_plugins();

// Refer to this page : http://kwiver.readthedocs.io/en/latest/vital/images.html
// Documenting the types and algorithms associated with images:

// Various implementations of the algorithm,

// The string to use to specify creation of a specific implementation,
// The KWIVER CMake option that builds the specific implementation
SIS S S

// Image I/0 //

SIS S

// The main image libraries used in KWIVER are the OpenCV and VXL libraries

kwiver::vital::algo::image_io_sptr ocv_io = kwiver::vital::algo::image_io::create(
—"ocv");

kwiver::vital::algo::image_io_sptr vxl_io = kwiver::vital::algo::image_io::create(
—"vx1l");

// The image_io interface is simple, and has a load and save method

// These methods will operate on the vital object image container

// The image_container is intended to be a wrapper for image to facilitate
—conversion between

// various representations. It provides limited access to the underlying

// data and is not intended for direct use in image processing algorithms.

kwiver::vital::image_container_sptr ocv_img = ocv_io->load("./cat.jpg");

kwiver::vital::image_container_sptr vxl_img = vxl_io->load("./cat.jpg");

// Let's use OpenCV to display the images

// NOTE, this requires that our application CMakeLists properly find package (OpenCV)

// And that we tell our application CMake targets about OpenCV (See the CMakeLists.
—txt for this file)

cv::Mat mat;

// First, convert the image to an OpenCV image object

mat = kwiver::arrows::ocv::image_container::vital_to_ocv (ocv_img->get_image());

cv::namedWindow ("Image loaded by OpenCV", cv::WINDOW_AUTOSIZE);// Create a window,_,
—for display.

cv::imshow ("Image loaded by OpenCV", mat); // Show our image_,
—inside it.

cv::waitKey (5);

Sleep (2000); // Wait for 2s

cvDestroyWindow ("Image loaded by OpenCV");

2.1. Vital Architecture 15

75

76

77

78

79

81

82

84

85

87

88

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

KWIVER Documentation, Release 1

// We can do the same, even 1if the image was originally loaded with VXL

mat = kwiver::arrows::ocv::image_container::vital_to_ocv(vxl_img->get_image());

cv: :namedWindow ("Image loaded by VXL", cv::WINDOW_AUTOSIZE);// Create a window for,,
—~display.

cv::imshow ("Image loaded by VXL", mat); // Show our image,
—inside it.

cv::waitKey (5);

Sleep (2000); // Wait for 2s

cvDestroyWindow ("Image loaded by VXL");

LSS S S
// Image Filter //
SIS S S S

// Currently, there 1is no arrow implementing image filtering
//kwiver::vital::algo::image_filter _sptr _filter = kwiver::vital::algo::image_
—~filter::create ("<impl_name>");

SIS
// Split Image //
SIS

// These algorithms split an image in half (left and right)

kwiver::vital::algo::split_image_sptr ocv_split = kwiver::vital::algo::split_
—image: :create ("ocv");

kwiver::vital::algo::split_image_sptr vxl_split = kwiver::vital::algo::split_
—image::create ("vxl");

std: :vector<kwiver::vital::image_container_sptr> ocv_imgs = ocv_split->split (vx1l_
—img) ;
for (kwiver::vital::image_container_sptr i : ocv_imgs)
{
mat = kwiver::arrows::ocv::image_container::vital_to_ocv(i->get_image());
cv: :namedWindow ("OpenCV Split Image", cv::WINDOW_AUTOSIZE);// Create a window for,
—display.
cv::imshow ("OpenCV Split Image", mat); // Show our image_

—inside it.
cv::waitKey (5);
Sleep (2000); // Wait for 2s
cvDestroyWindow ("OpenCV Split Image");

std::vector<kwiver::vital::image_container_sptr> vxl_imgs = ocv_split->split (ocv_
—img) ;
for (kwiver::vital::image_container_sptr i : vxl_imgs)

{

mat = kwiver::arrows::ocv::image_container::vital_to_ocv(i->get_image());

cv::namedWindow ("VXL Split Image", cv::WINDOW_AUTOSIZE);// Create a window for_
—display.

cv::imshow ("VXL Split Image", mat); // Show our image inside_,

—it.
cv::waitKey (5);
Sleep (2000); // Wait for 2s
cvDestroyWindow ("VXL Split Image");

16 Chapter 2. Architecture

KWIVER Documentation, Release 1

Detections

The following types are provided to encapsulate data generated by an algorithm, associated with a particular image.

’ bounding_box \ detected_object | detected_object_set

Vital Doxygen
Types
Other

There are various other vital types that are also used to help direct algorithms or hold specific data associated with an
image.

camera camera_intrinsics
rgb_color covariance descriptor
descriptor_request | descriptor_set

Image

class kwiver::vital: :image
The representation of an in-memory image.

Images share memory using the image_memory class. This is effectively a view on an image.

Subclassed by kwiver::vital::image_of< uint16_t >, kwiver::vital::image_of< T >

Public Functions

image (const image_pixel_traits &pr = image_pixel_traits ())
Default Constructor.
Parameters

* pt: Change the pixel traits of the image

image (size_t width, size_t height, size_t depth = 1, bool interleave = false, const image_pixel_traits &pt
= image_pixel_traits ())
Constructor that allocates image memory.

Create a new blank (empty) image of specified size.

Parameters
* width: Number of pixels in width
* height: Number of pixel rows
* depth: Number of image channels
* pt: data type traits of the image pixels

* interleave: Setif the pixels are interleaved

2.1. Vital Architecture 17

KWIVER Documentation, Release 1

image (const void *first_pixel, size_t width, size_t height, size_t depth, ptrdiff_t w_step, ptrdiff_t h_step,
ptrdiff_t d_step, const image_pixel_traits &ptr = image_pixel_traits ())
Constructor that points at existing memory.

Create a new image from supplied memory.

Parameters

e first_pixel: Address of the first pixel in the image. This does not have to be the lowest
memory address of the image memory.

* width: Number of pixels wide

* height: Number of pixels high

* depth: Number of image channels

* w_step: pointer increment to get to next pixel column
* h_step: pointer increment to get to next pixel row

* d_step: pointer increment to get to next image channel

* pt: data type traits of the image pixels

image (const image_memory_sptr &mem, const void *first_pixel, size_t width, size_t height, size_t
depth, ptrdiff_t w_step, ptrdiff_t h_step, ptrdiff_t d_step, const image_pixel_traits &pt = im-

age_pixel_traits ())
Constructor that shares memory with another image.

Create a new image from existing image.

Parameters
* mem: Shared memory block to be used

e first_pixel: Address of the first pixel in the image. This does not have to be the lowest
memory address of the image memory.

* width: Number of pixels wide
* height: Number of pixels high
* depth: Number of image channels
* w_step: pointer increment to get to next pixel column
* h_step: pointer increment to get to next pixel row
* d_step: pointer increment to get to next image channel
* pt: data type traits of the image pixels
image (const image &other)
Copy Constructor.
The new image will share the same memory as the old image
Parameters

* other: The other image.

const image &operator= (const image &other)
Assignment operator.

18 Chapter 2. Architecture

KWIVER Documentation, Release 1

const image_memory_sptr &memory () const
Const access to the image memory.

image_memory_sptr memory ()
Access to the image memory.

size_t size () const
The size of the image managed data in bytes.

The size of the image data in bytes.

This size includes all allocated image memory, which could be

width*height*depth*bytes_per_pixel.

than

Note This size only accounts for memory which is owned by the image. If this image was constructed as

a view into third party memory then the size is reported as 0.

const void *first_pixel () const
Const access to the pointer to first image pixel.

This may differ from data() if the image is a window into a large image memory chunk.

void *£first_pixel ()
Access to the pointer to first image pixel.

This may differ from data() if the image is a window into a larger image memory chunk.

size_t width () const
The width of the image in pixels.

size_t height () const
The height of the image in pixels.

size_t depth () const
The depth (or number of channels) of the image.

const image_pixel_traits &pixel_traits () const
The trait of the pixel data type.

ptrdiff_tw_step () const
The the step in memory to next pixel in the width direction.

ptrdiff th_step () const
The the step in memory to next pixel in the height direction.

ptrdiff_td_step () const
The the step in memory to next pixel in the depth direction.

bool is_contiguous () const
Return true if the pixels accessible in this image form a contiguous memory block.

template <typename T>
T &at (unsigned i, unsigned j)
Access pixels in the first channel of the image.
Parameters
* i: width position (x)

* j: height position (y)

2.1.

Vital Architecture

19

KWIVER Documentation, Release 1

template <typename T>
const T &at (unsigned 7, unsigned j) const
Const access pixels in the first channel of the image.

template <typename T>
T &at (unsigned i, unsigned j, unsigned k)
Access pixels in the image (width, height, channel)

template <typename T>
const T &at (unsigned 7, unsigned j, unsigned k) const
Const access pixels in the image (width, height, channel)

void copy_ from (const image &other)
Deep copy the image data from another image into this one.

void set_size (size_t width, size_t height, size_t depth)
Set the size of the image.

If the size has not changed, do nothing. Otherwise, allocate new memory matching the new size.
Parameters

* width: a new image width

* height: a new image height

* depth: a new image depth

class kwiver::vital: :image_container

An abstract representation of an image container.

This class provides an interface for passing image data between algorithms. It is intended to be a wrapper
for image classes in third-party libraries and facilitate conversion between various representations. It provides
limited access to the underlying data and is not intended for direct use in image processing algorithms.

Subclassed by kwiver::arrows::ocv::image_container, kwiver::arrows::vcl::image_container,
kwiver::arrows::vxl::image_container, kwiver::vital::simple_image_container

Public Functions
virtual ~image_container ()

Destructor.

virtual size_t size () const=0
The size of the image data in bytes.

This size includes all allocated image memory, which could be larger than width*height*depth.

virtual size_t width () const=0
The width of the image in pixels.

virtual size_t height () const =0
The height of the image in pixels.

virtual size_t depth () const =0
The depth (or number of channels) of the image.

virtual image get_image () const =0
Get and in-memory image class to access the data.

20

Chapter 2. Architecture

KWIVER Documentation, Release 1

virtual video_metadata_sptr get_metadata () const
Get metadata associated with this image.

virtual void set_metadata (video_metadata_sptr md)
Set metadata associated with this image.

Detections

template <typename 7>
class kwiver::vital: :bounding box
Coordinate aligned bounding box.

This class represents a coordinate aligned box. The coordinate system places the origin in the upper left.

A bounding box must be constructed with the correct geometry. Once created, the geometry can not be altered.

Public Functions

bounding_ box (vector_type const &upper_left, vector_type const &lower_right)
Create box from two corner points.
Parameters
* upper_left: Upper left corner of box.

* lower_right: Lower right corner of box.

bounding_box (vector_type const &upper_left, T const &width, T const &height)
Create box from point and dimensions.
Parameters
* upper_left: Upper left corner point
e width: Width of box.
* height: Height of box.
bounding_ box (T xmin, T ymin, T xmax, T ymax)
Create a box from four coordinates.
Parameters
e xmin: Minimum x coordinate
e ymin: minimum y coordinate
e xmax: Maximum X coordinate

* ymax: Maximum y coordinate

vector_type center () const
Get center coordinate of box.

Return Center coordinate of box.

2.1. Vital Architecture 21

KWIVER Documentation, Release 1

vector_type upper_left () const
Get upper left coordinate of box.

Return Upper left coordinate of box.

vector_type lower_right () const
Get lower right coordinate of box.

Return Lower right coordinate of box.

T width () const
Get width of box.

Return Width of box.

T height () const
Get height of box.

Return Height of box.

double area () const
Get area of box.

Return Area of box.
class kwiver::vital: :detected_object
Detected object class.

This class represents a detected object in image space.

There is one object of this type for each detected object. These objects are defined by a bounding box in the
image space. Each object has an optional classification object attached.

Public Functions

detected_object (const bounding_box_d &bbox, double confidence = 1.0, de-

tected_object_type_sptr classifications = detected_object_type_sptr())
Create detected object with bounding box and other attributes.

Parameters
* bbox: Bounding box surrounding detected object, in image coordinates.
* confidence: Detectors confidence in this detection.

* classifications: Optional object classification.

detected_object_sptr clone () const
Create a deep copy of this object.

Return Managed copy of this object.

22 Chapter 2. Architecture

KWIVER Documentation, Release 1

bounding_box_d bounding_box () const
Get bounding box from this detection.

The bounding box for this detection is returned. This box is in image coordinates. A default constructed

(invalid) bounding box is returned if no box has been supplied for this detection.

Return A copy of the bounding box.

void set_bounding_box (const bounding_box_d &bbox)
Set new bounding box for this detection.

The supplied bounding box replaces the box for this detection.

Parameters

* bbox: Bounding box for this detection.

double confidence () const
Get confidence for this detection.

This method returns the current confidence value for this detection. Confidence values are in the range of
0.0-1.0.

Return Confidence value for this detection.

void set_confidence (double d)
Set new confidence value for detection.

This method sets a new confidence value for this detection. Confidence values are in the range of [0.0 -
1.0].
Parameters

¢ d: New confidence value for this detection.

uint64_t index () const
Get detection index.

This method returns the index for this detection.
The detection index is a general purpose field that the application can use to individually identify a detec-

tion. In some cases, this field can be used to correlate the detection of an object over multiple frames.

Return Detection index fof this detections.

void set_index (uint64_t idx)
Set detection index.

This method sets tne index value for this detection.

The detection index is a general purpose field that the application can use to individually identify a detec-
tion. In some cases, this field can be used to correlate the detection of an object over multiple frames.
Parameters

¢ idx: Detection index.

2.1. Vital Architecture 23

KWIVER Documentation, Release 1

const std::string &detector_name () const
Get detector name.

This method returns the name of the detector that created this element. An empty string is returned if the

detector name is not set.

Return Name of the detector.

void set_detector_name (const std::string &name)
Set detector name.

This method sets the name of the detector for this detection.

Parameters

e name: Detector name.

detected_object_type_sptr type ()
Get pointer to optional classifications object.

This method returns the pointer to the classification object if there is one. If there is no classification object

the pointer is NULL.

Return Pointer to classification object or NULL.

void set_type (detected_object_type_sptr ¢)
Set new classifications for this detection.

This method supplies a new set of class_names and scores for this detection.

Parameters

e c: New classification for this detection

image_container_sptr mask ()
Get detection mask image.

This method returns the mask image associated with this detection.

Return Pointer to the mask image.

void set_mask (image_container_sptr m)
Set mask image for this detection.

This method supplies a new mask image for this detection.
Parameters

* m: Mask image

detected_object::descriptor_sptr descriptor () const
Get descriptor vector.

This method returns an optional descriptor vector that was used to create this detection. This is only set

for certain object detectors.

Return Pointer to the descriptor vector.

24

Chapter 2. Architecture

KWIVER Documentation, Release 1

void set_descriptor (descriptor_sptr d)
Set descriptor for this detection.

This method sets a descriptor vector that was used to create this detection. This is only set for certain
object detectors.
Parameters
* d: Descriptor vector
class kwiver::vital: :detected_object_set
Set of detected objects.

This class represents a ordered set of detected objects. The detections are ordered on their basic confidence
value.

Reentrancy considerations: Typical usage for a set is for a single detector thread to create a set. It is possible to
have an application where two threads are accessing the same set concurrently.

Inherits from kwiver::vital::noncopyable

Unnamed Group

detected_object_set::iterator begin ()
Detected object set iterators;.

This method returns an iterator for the set of detected objects. The iterator points to a shared pointer to a

detected object.

Return An iterator over the objects in this set;

Public Functions

detected_object_set ()
Create an empty detection set.

This CTOR creates an empty detection set. Detections can be added with the add() method.

detected_object_set (std::vector<detected_object_sptr> const &objs)
Create new set of detected objects.

This CTOR creates a detection set using the supplied vector of detection objects. This can be used to create
a new detection set from the output of a select() method.
Parameters

* objs: Vector of detected objects.

detected_object_set_sptr clone () const
Create deep copy.

This method creates a deep copy of this object.

Return Managed copy of this object.

2.1. Vital Architecture 25

KWIVER Documentation, Release 1

void add (detected_object_sptr object)
Add detection to set.

This method adds a new detection to this set.

Parameters

* object: Detection to be added to set.

void add (detected_object_set_sptr detections)
Add detection set to set.

This method adds a new detection set to this set.

Parameters

e detections: Detection set to be added to set.

size_t size () const
Get number of detections in this set.

This method returns the number of detections in the set.

Return Number of detections.

bool empty () const
Returns whether or not this set is empty.

This method returns true if the set is empty, false otherwise.

Return Whether or not the set is empty.

detected_object_set_sptr select (double threshold = detected_object_type::INVALID_SCORE) const
Select detections based on confidence value.

This method returns a vector of detections ordered by confidence value, high to low. If the optional
threshold is specified, then all detections from the set that are less than the threshold are not in the selected
set. Note that the selected set may be empty.

The returned vector refers to the actual detections in the set, so if you make changes to the selected set,
you are also changing the object in the set. If you want a clean set of detections, call clone() first.

Return List of detections.

Parameters

* threshold: Select all detections with confidence not less than this value. If this parameter is
omitted, then all detections are selected.

detected_object_set_sptr select (const std::string &class_name, double threshold = de-

tected_object_type::INVALID_SCORE) const
Select detections based on class_name.

This method returns a vector of detections that have the specified class_name. These detections are ordered
by descending score for the name. Note that the selected set may be empty.

The returned vector refers to the actual detections in the set, so if you make changes to the selected set,
you are also changing the object in the set. If you want a clean set of detections, call clone() first.

26 Chapter 2. Architecture

KWIVER Documentation, Release 1

Return List of detections.
Parameters
* class_name: class name

* threshold: Select all detections with confidence not less than this value. If this parameter is
omitted, then all detections with the label are selected.

void scale (double scale_factor)
Scale all detection locations by some scale factor.

This method changes the bounding boxes within all stored detections by scaling them by some scale factor.

Parameters

e scale: Scale factor

void shift (double col_shift, double row_shift)
Shift all detection locations by some translation offset.

This method shifts the bounding boxes within all stored detections by a supplied column and row shift.

Note: Detections in this set can be shared by multiple sets, so shifting the detections in this set will also
shift the detection in other sets that share this detection. If this is going to be a problem, clone() this set
before shifting.

Parameters

e col_shift: Column (a.k.a. x, i, width) translation factor

* row_shift: Row (ak.a.y, j, height) translation factor

kwiver::vital::attribute_set_sptr attributes () const
Get attributes set.

This method returns a pointer to the attribute set that is attached to this object. It is possible that the pointer
is NULL, so check before using it.

Return Pointer to attribute set or NULL

void set_attributes (attribute_set_sptr attrs)
Attach attributes set to this object.

This method attaches the specified attribute set to this object.

Parameters

e attrs: Pointer to attribute set to attach.

Other

class kwiver::vital: :camera
An abstract representation of camera.

The base class of cameras is abstract and provides a double precision interface. The templated derived class can
store values in either single or double precision.

Subclassed by kwiver::vital::simple_camera

2.1. Vital Architecture 27

KWIVER Documentation, Release 1

Public Functions

virtual ~camera ()
Destructor.

virtual camera_sptr clone () const=0
Create a clone of this camera object.

virtual vector_3d center () const=0
Accessor for the camera center of projection (position)

virtual vector_3d translation () const=0
Accessor for the translation vector.

virtual covariance_3d center_covar () const =0
Accessor for the covariance of camera center.

virtual rotation_d rotation () const =0
Accessor for the rotation.

virtual camera_intrinsics_sptr intrinsics () const =0
Accessor for the intrinsics.

virtual camera_sptr clone_look_at (const vector_3d &stare_point, const vector_3d &up_direction

= vector_3d::UnitZ()) const =0
Create a clone of this camera that is rotated to look at the given point.

Return New clone, but set to look at the given point.
Parameters
* stare_point: the location at which the camera is oriented to point

* up_direction: the vector which is “up” in the world (defaults to Z-axis)

matrix_3x4d as_matrix () const
Convert to a 3x4 homogeneous projection matrix.

Note This matrix representation does not account for lens distortion models that may be used in the
camera_intrinsics

vector_2d project (const vector_3d &pt) const
Project a 3D point into a 2D image point.

double depth (const vector_3d &pt) const
Compute the distance of the 3D point to the image plane.

Points with negative depth are behind the camera

class kwiver::vital::camera_ intrinsics
An abstract representation of camera intrinsics.

Subclassed by kwiver::vital::simple_camera_intrinsics

28 Chapter 2. Architecture

KWIVER Documentation, Release 1

Public Functions

virtual ~camera_ intrinsics ()
Destructor.

virtual camera_intrinsics_sptr clone () const =0
Create a clone of this object.

virtual double focal_length () const=0
Access the focal length.

virtual vector_2d principal_point () const=0
Access the principal point.

virtual double aspect_ratio () const=0
Access the aspect ratio.

virtual double skew () const =0
Access the skew.

virtual std::vector<double> dist_coeffs () const
Access the distortion coefficients.

matrix_3x3d as_matrix () const
Access the intrinsics as an upper triangular matrix.

Convert to a 3x3 calibration matrix.

Note This matrix includes the focal length, principal point, aspect ratio, and skew, but does not model
distortion

vector_2d map (const vector_2d &norm_pt) const
Map normalized image coordinates into actual image coordinates.

This function applies both distortion and application of the calibration matrix to map into actual image
coordinates

vector_2d map (const vector_3d &norm_hpt) const
Map a 3D point in camera coordinates into actual image coordinates.

vector_2d unmap (const vector_2d &norm_pt) const
Unmap actual image coordinates back into normalized image coordinates.

This function applies both application of the inverse calibration matrix and undistortion of the normalized
coordinates.

virtual vector_2d distort (const vector_2d &norm_pt) const
Map normalized image coordinates into distorted coordinates.

The default implementation is the identity transformation (no distortion)

virtual vector_2d undistort (const vector_2d &dist_pt) const
Unmap distorted normalized coordinates into normalized coordinates.

The default implementation is the identity transformation (no distortion)

struct kwiver::vital::rgb_color
Struct to represent an RGB tuple.

2.1. Vital Architecture 29

KWIVER Documentation, Release 1

Public Functions

rgb_color ()
Default constructor - set the color to white.

rgb_color (uint8_t const &cr, uint8_t const &cg, uint8_t const &cb)
Constructor.

rgb_color (rgb_color const &c)
Copy Constructor.
template <class Archive>

void serialize (Archive &archive)
Serialization of the class data.

template <unsigned N, typename 7>
class kwiver::vital: :covariance_

A representation of covariance of a measurement.

Public Functions

covariance_ ()
Default Constructor - Initialize to identity.

covariance_ (const covariance <N, T> &other)
Copy constructor.

template <typename U>
covariance_ (const covariance_<N, U> &other)
Copy Constructor from another type.

covariance_ (const T &value)
Constructor - initialize to identity matrix times a scalar.

covariance_ (const Eigen::Matrix<T, N, N> &mat)
Constructor - from a matrix.

Averages off diagonal elements to enforce symmetry
Parameters

e mat: matrix to construct from.

covariance_<N, T> &operator= (const covariance_<N, T> &other)
Assignment operator.

Eigen::Matrix<T, N, N> matrix () const
Extract a full matrix.

T &operator () (unsigned int i, unsigned int ;)
Return the i-th row, j-th column.

const T &operator () (unsigned int i, unsigned int j) const
Return the i-th row, j-th column (const)

const T *data () const
Access the underlying data.

30

Chapter 2. Architecture

KWIVER Documentation, Release 1

bool operator== (covariance_<N, T> const &other) const
Equality operator.

bool operator!= (covariance_<N, T> const &other) const
Inequality operator.

template <class Archive>
void serialize (Archive &archive)
Serialization of the class data.

Public Static Attributes

const unsigned int data_size=N*(N+1)/2
Number of unique values in a NxN symmetric matrix.

class kwiver::vital: :descriptor
A representation of a feature descriptor used in matching.

Subclassed by kwiver::vital::descriptor_array_of< T >

Public Functions

virtual ~descriptor ()
Destructor.

virtual std::type_info const &data_type () const =0
Access the type info of the underlying data (double or float)

virtual std::size_t size () const =0
The number of elements of the underlying type.

virtual std::size_t num_bytes () const=0
The number of bytes used to represent the data.

virtual std::vector<byte> as_bytes () const=0
Return the descriptor as a vector of bytes.

This should always work, even if the underlying type is not bytes

virtual std::vector<double> as_double () const =0
Return the descriptor as a vector of doubles.

Return an empty vector if this makes no sense for the underlying type.

bool operator== (descriptor const &other) const
Equality operator.

bool operator!= (descriptor const &other) const
Inequality operator.

class kwiver::vital: :descriptor_request
A representation of a descriptor request.

This is used by some arbitrary GUI to request and return computed descriptors on some region of the input
imagery.

2.1. Vital Architecture 31

KWIVER Documentation, Release 1

class kwiver::vital: :descriptor_set

An abstract ordered collection of feature descriptors.

The base class descriptor_set is abstract and provides an interface for returning a vector of descriptors. There
is a simple derived class that stores the data as a vector of descriptors and returns it. Other derived classes can
store the data in other formats and convert on demand.

Subclassed by kwiver::arrows::ocv::descriptor_set, kwiver::arrows::vcl::descriptor_set,
kwiver::vital::simple_descriptor_set

Public Functions
virtual ~descriptor_set ()

Destructor.

virtual size_t size () const=0
Return the number of descriptors in the set.

virtual std::vector<descriptor_sptr> descriptors () const =0
Return a vector of descriptor shared pointers.

Algorithms

Base Types

class kwiver::vital::algorithm

An abstract base class for all algorithms.
This class is an abstract base class for all algorithm implementations.

Subclassed by kwiver::vital::algorithm_def< analyze_tracks >, kwiver::vital::algorithm_def< bundle_adjust
>, kwiver::vital::algorithm_def< close_loops >, kwiver::vital::algorithm_def< compute_ref_homography
>, kwiver::vital::algorithm_def< compute_stereo_depth_map >, kwiver::vital::algorithm_def< com-
pute_track_descriptors >, kwiver::vital::algorithm_def< convert_image >, kwiver::vital::algorithm_def<
detect_features >, kwiver::vital::algorithm_def< detected_object_filter >, kwiver::vital::algorithm_def<

detected_object_set_input >, kwiver::vital::algorithm_def< detected_object_set_output >,
kwiver::vital::algorithm_def< draw_detected_object_set >, kwiver::vital::algorithm_def< draw_tracks
>, kwiver::vital::algorithm_def< dynamic_configuration >, kwiver::vital::algorithm_def< es-
timate_canonical_transform >, kwiver::vital::algorithm_def< estimate_essential_matrix >,
kwiver::vital::algorithm_def< estimate_fundamental_matrix >, kwiver::vital::algorithm_def<
estimate_homography >, kwiver::vital::algorithm_def< estimate_similarity_transform >,

kwiver::vital::algorithm_def< extract_descriptors >, kwiver::vital::algorithm_def< feature_descriptor_io
>, kwiver::vital::algorithm_def< filter_features >, kwiver::vital::algorithm_def< filter_tracks >,
kwiver::vital::algorithm_def< formulate_query >, kwiver::vital::algorithm_def< image_filter >,
kwiver::vital::algorithm_def< image_io >, kwiver::vital::algorithm_def< image_object_detector >,
kwiver::vital::algorithm_def< initialize_cameras_landmarks >, kwiver::vital::algorithm_def< match_features
>, kwiver::vital::algorithm_def< optimize_cameras >, kwiver::vital::algorithm_def< refine_detections >,
kwiver::vital::algorithm_def< split_image >, kwiver::vital::algorithm_def< track_descriptor_set_input >,
kwiver::vital::algorithm_def< track_descriptor_set_output >, kwiver::vital::algorithm_def< track_features
>, kwiver::vital::algorithm_def< train_detector >, kwiver::vital::algorithm_def< triangulate_landmarks
>, kwiver::vital::algorithm_def< — uuid_factory >, kwiver::vital::algorithm_def< video_input >,
kwiver::vital::algorithm_def< Self >

32

Chapter 2. Architecture

KWIVER Documentation, Release 1

Public Functions

virtual std::string type_name () const =0
Return the name of the base algorithm.

std::string impl_name () const
Return the name of this implementation.

config_block_sptr get_configuration () const
Get this algorithm’s configuration block .

Get this alg’s configuration block .

This method returns the required configuration for the algorithm. The implementation of this method
should be light-weight and only create and fill in the config block.

This base virtual function implementation returns an empty configuration.

Return config_block containing the configuration for this algorithm and any nested components.

virtual void set_configuration (config_block_sptr config) =0
Set this algorithm’s properties via a config block.

This method is called to pass a configuration to the algorithm. The implementation of this method should
be light-weight and only save the necessary config values. Defer any substantial processing in another
method.

Exceptions

* no_such_configuration_value_exception: Thrown if an expected configuration
value is not present.

* algorithm_configuration_exception: Thrown when the algorithm is given an invalid
config_block or is otherwise unable to configure itself.

Parameters

* config: The config_block instance containing the configuration parameters for this algo-
rithm

virtual bool check_configuration (config_block_sptr config) const =0
Check that the algorithm’s configuration config_block is valid.

This checks solely within the provided config_block and not against the current state of the instance.
This isn’t static for inheritance reasons.

Return true if the configuration check passed and false if it didn’t.

Parameters

* config: The config block to check configuration of.

Public Static Functions

void get_nested_algo_configuration (std::string const &type_name, std::string const &name,

config_block_sptr config, algorithm_sptr nested_algo)
Helper function for properly getting a nested algorithm’s configuration.

2.1. Vital Architecture 33

KWIVER Documentation, Release 1

Adds a configurable algorithm implementation switch for this algorithm. If the variable pointed to by
nested_algo is a defined sptr to an implementation, its configuration parameters are merged with the
given config_block .
Parameters

* type_name: The type name of the nested algorithm.

* name: An identifying name for the nested algorithm

* config: The config_block instance in which to put the nested algorithm’s configuration.

* nested_algo: The nested algorithm’s sptr variable.

void set_nested_algo_configuration (std:string const &tfype_name, std::string const
&name, config_block_sptr config, algorithm_sptr

&nested_algo)
Helper function for properly setting a nested algorithm’s configuration.

Helper method for properly setting a nested algorithm’s configuration.

If the value for the config parameter “type” is supported by the concrete algorithm class, then a new
algorithm object is created, configured and returned via the nested_algo pointer.

The nested algorithm will not be set if the implementation switch (as defined in the
get_nested_algo_configuration) is not present or set to an invalid value relative to the reg-
istered names for this type_name
Parameters

* type_name: The type name of the nested algorithm.

* name: Config block name for the nested algorithm.

* config: The config_block instance from which we will draw configuration needed for the
nested algorithm instance.

* nested_algo: The nested algorithm’s sptr variable.

bool check_nested_algo_configuration (std::string const &type_name, std::string const

&name, config_block_sptr config)
Helper function for checking that basic nested algorithm configuration is valid.

Helper method for checking that basic nested algorithm configuration is valid.
Check that the expected implementation switch exists and that its value is registered implementation name.
If the name is valid, we also recursively call check_configuration() on the set implementation. This is done
with a fresh create so we don’t have to rely on the implementation being defined in the instance this is
called from.
Parameters

* type_name: The type name of the nested algorithm.

* name: An identifying name for the nested algorithm.

* config: The config_block to check.

template <typename Self>

34 Chapter 2. Architecture

KWIVER Documentation, Release 1

class kwiver::vital::algorithm_def
An intermediate templated base class for algorithm definition.

Uses the curiously recurring template pattern (CRTP) to declare the clone function and automatically provide
functions to register algorithm, and create new instance by name. Each algorithm definition should be declared
as shown below

class my_algo_def
: public algorithm_def<my_algo_def>
{

}i

See algorithm_impl

Inherits from kwiver: :vital::algorithm

Public Types

typedef std::shared_ptr<Self> base_sptr
Shared pointer type of the templated vital::algorithm_def class.

Public Functions

virtual std::string type_name () const
Return the name of this algorithm.

Public Static Functions

static base_sptr create (std::string const &impl_name)
Factory method to make an instance of this algorithm by impl_name.

static std::vector<std::string> registered_names ()
Return a vector of the impl_name of each registered implementation.

static void get_nested_algo_configuration (std::string const &name, config_block_sptr con-

fig, base_sptr nested_algo)
Helper function for properly getting a nested algorithm’s configuration.

Adds a configurable algorithm implementation switch for this algorithm_def . If the variable pointed to by
nested_algo is a defined sptr to an implementation, its configuration parameters are merged with the
given config_block .
Parameters

* name: An identifying name for the nested algorithm

* config: The config_block instance in which to put the nested algorithm’s configuration.

* nested_algo: The nested algorithm’s sptr variable.

2.1. Vital Architecture 35

KWIVER Documentation, Release 1

static void set_nested_algo_configuration (std::string const &name, config_block_sptr con-

fig, base_sptr &nested_algo)
Instantiate nested algorithm.

A new concrete algorithm object is created if the value for the config parameter “type” is supported. The
new object is returned through the nested_algo parameter.

The nested algorithm will not be set if the implementation switch (as defined in the
get_nested_algo_configuration) is not present or set to an invalid value relative to the reg-
istered names for this algorithm def.

Parameters

* name: Config block name for the nested algorithm.

* config: The config_block instance from which we will draw configuration needed for the
nested algorithm instance.

* nested_algo: Pointer to the algorithm object is returned here.

static bool check_nested_algo_configuration (std::string const &name, config_block_sptr

config)
Helper function for checking that basic nested algorithm configuration is valid.

Check that the expected implementation switch exists and that its value is registered implementation name.

If the name is valid, we also recursively call check_configuration() on the set implementation. This is done
with a fresh create so we don’t have to rely on the implementation being defined in the instance this is
called from.
Parameters

* name: An identifying name for the nested algorithm.

* config: The config_block to check.

Functionality

class kwiver::vital::algo: :analyze_tracks
Abstract base class for writing out human readable track statistics.

Inherits from kwiver::vital::algorithm_def< analyze_tracks >

Subclassed by kwiver::vital::algorithm_impl< analyze_tracks, vital::algo::analyze_tracks >
Public Functions

virtual void print_info (kwiver::vital::track_set_sptr track_set, stream_t &stream = std::cout) const
=0
Output various information about the tracks stored in the input set.
Parameters

* track_set: the tracks to analyze

* stream: an output stream to write data onto

36 Chapter 2. Architecture

KWIVER Documentation, Release 1

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: :bundle_adjust
An abstract base class for bundle adjustment using feature tracks.

Inherits from kwiver::vital::algorithm_def< bundle_adjust >

Subclassed by kwiver::vital::algorithm_impl< bundle_adjust, vital::algo::bundle_adjust >,
kwiver::vital::algorithm_impl< hierarchical_bundle_adjust, vital::algo::bundle_adjust >

Public Types

typedef std::function<bool (kwiver::vital::camera_map_sptr, kwiver::vital::landmark_map_sptr) >

callback_ t
Typedef for the callback function signature.

Public Functions

virtual void optimize (kwiver::vital::camera_map_sptr &cameras, kwiver::vital::landmark_map_sptr
&landmarks, kwiver::vital::feature_track_set_sptr tracks,

kwiver::vital::video_metadata_map_sptr metadata = nullptr) const =0
Optimize the camera and landmark parameters given a set of feature tracks.

Implementations of this function should not modify the underlying objects contained in the input struc-
tures. Output references should either be new instances or the same as input.
Parameters

* cameras: the cameras to optimize

* landmarks: the landmarks to optimize

* tracks: the feature tracks to use as constraints

e metadata: the frame metadata to use as constraints

void set_callback (callback_t cb)
Set a callback function to report intermediate progress.

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: :close_loops
Abstract base class for loop closure algorithms.

Different algorithms can perform loop closure in a variety of ways, either in attempt to make either short or long
term closures. Similarly to track_features, this class is designed to be called in an online fashion.

Inherits from kwiver::vital::algorithm_def< close_loops >

2.1. Vital Architecture 37

KWIVER Documentation, Release 1

Subclassed by kwiver::vital::algorithm_impl< close_loops_bad_frames_only, Vi-
tal::algo::close_loops >, kwiver::vital::algorithm_impl< close_loops_exhaustive, Vi-
tal::algo::close_loops >, kwiver::vital::algorithm_impl< close_loops_keyframe, vital::algo::close_loops
>, kwiver::vital::algorithm_impl< close_loops_multi_method, vital::algo::close_loops >,

kwiver::vital::algorithm_impl< vxl::close_loops_homography_guided, vital::algo::close_loops >

Public Functions

virtual kwiver::vital::feature_track_set_sptr stitch (kwiver::vital::frame_id_t frame_number,
kwiver::vital::feature_track_set_sptr input,
kwiver::vital::image_container_sptr image,

kwiver::vital::image_container_sptr ~ mask =
kwiver::vital::image_container_sptr ()) const =0
Attempt to perform closure operation and stitch tracks together.

Return an updated set of feature tracks after the stitching operation
Parameters
e frame_number: the frame number of the current frame
* input: the input feature track set to stitch
* image: image data for the current frame

* mask: Optional mask image where positive values indicate regions to consider in the input image.

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: :compute_ref homography

Abstract base class for mapping each image to some reference image.

This class differs from estimate_homographies in that estimate_homographies simply performs a homography
regression from matching feature points. This class is designed to generate different types of homographies
from input feature tracks, which can transform each image back to the same coordinate space derived from
some initial refrerence image.

Inherits from kwiver: :vital::algorithm_def< compute_ref_homography >

Subclassed by kwiver::vital::algorithm_impl< compute_ref_homography_core, vi-
tal::algo::compute_ref_homography >

Public Functions

virtual kwiver::vital::f2f_homography_sptr est imate (kwiver::vital::frame_id_t frame_number,
kwiver::vital::feature_track_set_sptr tracks)
const =0

Estimate the transformation which maps some frame to a reference frame.

Similarly to track_features, this class was designed to be called in an online fashion for each sequential
frame. The output homography will contain a transformation mapping points from the current frame (with
frame_id frame_number) to the earliest possible reference frame via post multiplying points on the current
frame with the computed homography.

38

Chapter 2. Architecture

KWIVER Documentation, Release 1

The returned homography is internally allocated and passed back through a smart pointer transferring
ownership of the memory to the caller.
Return estimated homography
Parameters
e frame_number: frame identifier for the current frame

* tracks: the set of all tracked features from the image

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: :compute_stereo_depth map
An abstract base class for detecting feature points.

Inherits from kwiver::vital::algorithm_def< compute_stereo_depth_map >

Public Functions

virtual kwiver::vital::image_container_sptr compute (kwiver::vital::image_container_sptr

left_image, kwiver::vital::image_container_sptr
right_image) const =0

Compute a stereo depth map given two images.

Return a depth map image

Exceptions

* image_size_mismatch_exception: When the given input image sizes do not match.
Parameters

* left_image: contains the first image to process

* right_image: contains the second image to process

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: :compute_track_descriptors
An abstract base class for computing track descriptors.

Inherits from kwiver::vital::algorithm_def< compute_track_descriptors >

Subclassed by kwiver::vital::algorithm_impl< burnout_track_descriptors, vi-
tal::algo::compute_track_descriptors >

2.1. Vital Architecture 39

KWIVER Documentation, Release 1

Public Functions

virtual kwiver::vital::track_descriptor_set_sptr compute (kwiver::vital::image_container_sptr im-
age_data, kwiver::vital::track_set_sptr
tracks) =0

Compute track descriptors given an image and tracks.

Return a set of track descriptors
Parameters
* image_data: contains the image data to process

* tracks: the tracks to extract descriptors around

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: :convert_image

An abstract base class for converting base image type.
Inherits from kwiver::vital::algorithm_def< convert_image >

Subclassed by kwiver::vital::algorithm_impl< convert_image, vital::algo::convert_image >,
kwiver::vital::algorithm_impl< convert_image_bypass, vital::algo::convert_image >

Public Functions
void set_configuration (kwiver::vital::config_block_sptr config)

Set this algorithm’s properties via a config block.

bool check_configuration (kwiver::vital::config_block_sptr config) const
Check that the algorithm’s currently configuration is valid.

Check that the algorithm’s current configuration is valid.
virtual kwiver::vital::image_container_sptr convert (kwiver::vital::image_container_sptr img) const=

0
Convert image base type.

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: :detect_features

An abstract base class for detecting feature points.
Inherits from kwiver: :vital::algorithm_def< detect_features >

Subclassed by kwiver::vital::algorithm_impl< detect_features, vital::algo::detect_features >,
kwiver::arrows::ocv::detect_features

40

Chapter 2. Architecture

KWIVER Documentation, Release 1

Public Functions

virtual kwiver::vital::feature_set_sptr detect (kwiver::vital::image_container_sptr image_data,
kwiver::vital::image_container_sptr mask =
kwiver::vital::image_container_sptr ()) const =0
Extract a set of image features from the provided image.

A given mask image should be one-channel (mask->depth() == 1). If the given mask image has more than
one channel, only the first will be considered.

Return a set of image features

Exceptions

* image_size_mismatch_exception: When the given non-zero mask image does not
match the size of the dimensions of the given image data.

Parameters
* image_data: contains the image data to process

* mask: Mask image where regions of positive values (boolean true) indicate regions to consider.
Only the first channel will be considered.

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: :detected_object_filter
An abstract base class for filtering sets of detected objects.

A detected object filter accepts a set of detections and produces another set of detections. The output set may
be different from the input set. It all depends on the actual implementation. In any case, the input detection set
shall be unmodified.

Inherits from kwiver::vital::algorithm_def< detected_object_filter >

Subclassed by kwiver::vital::algorithm_impl< class_probablity_filter, vital::algo::detected_object_filter >

Public Functions

virtual detected_object_set_sptr £ilter (const detected_object_set_sptr input_set) const =0
Filter set of detected objects.

This method applies a filter to the input set to create an output set. The input set of detections is unmodified.

Return Filtered set of detections.
Parameters

* input_set: Set of detections to be filtered.

2.1. Vital Architecture 41

KWIVER Documentation, Release 1

Public Static Functions

static std::string static_type_ name ()
Return the name of this algorithm.

class kwiver::vital::algo: :detected_object_set_input
Read detected object sets.

This class is the abstract base class for the detected object set writer.

Detection sets from multiple images are stored in a single file with enough information to recreate a unique
image identifier, usually the file name, and an associated set of detections.

Inherits from kwiver::vital::algorithm_def< detected_object_set_input >

Subclassed by kwiver::vital::algorithm_impl< detected_object_set_input_csv, Vi-
tal::algo::detected_object_set_input >, kwiver::vital::algorithm_impl< detected_object_set_input_kw18,
vital::algo::detected_object_set_input >

Public Functions

void open (std::string const &filename)
Open a file of detection sets.

This method opens a detection set file for reading.

Parameters
* filename: Name of file to open
Exceptions
* kwiver::vital::path_not_exists: Thrown when the given path does not exist.

e kwiver::vital::path_not_a_file: Thrown when the given path does not point to a
file (i.e. it points to a directory).

e kwiver::vital::file_not_found_exception:

void use_stream (std::istream *strm)
Read detections from an existing stream.

This method specifies the input stream to use for reading detections. Using a stream is handy when the
detections are available in a stream format.
Parameters

* strm: input stream to use

void close ()
Close detection set file.

The currently open detection set file is closed. If there is no currently open file, then this method does
nothing.

virtual bool read_set (kwiver::vital::detected_object_set_sptr &set, std::string &image_name) =0
Read next detected object set.

This method reads the next set of detected objects from the file. False is returned when the end of file is
reached.

42 Chapter 2. Architecture

KWIVER Documentation, Release 1

Return true if detections are returned, false if end of file.
Parameters

* set: Pointer to the new set of detections. Set may be empty if there are no detections on an
image.

* image_name: Name of the image that goes with the detections. This string may be empty
depending on the source format.

bool at_eof () const
Determine if input file is at end of file.

This method reports the end of file status for a file open for reading.

Return true if file is at end.

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: :detected_object_set_output
Read and write detected object sets.

This class is the abstract base class for the detected object set reader and writer.

Detection sets from multiple images are stored in a single file with enough information to recreate a unique
image identifier, usually the file name, and an associated wet of detections.

Inherits from kwiver::vital::algorithm_def< detected_object_set_output >

Subclassed by kwiver::vital::algorithm_impl< detected_object_set_output_csv, vi-
tal::algo::detected_object_set_output >, kwiver::vital::algorithm_impl< detected_object_set_output_kw18,
vital::algo::detected_object_set_output >, kwiver::vital::algorithm_impl< matlab_detection_output, vi-
tal::algo::detected_object_set_output >

Public Functions

void open (std::string const &filename)
Open a file of detection sets.

This method opens a detection set file for writing.

Parameters
» filename: Name of file to open
Exceptions
* kwiver::vital::path_not_exists: Thrown when the given path does not exist.

e kwiver::vital::path_not_a_file: Thrown when the given path does not point to a
file (i.e. it points to a directory).

2.1. Vital Architecture 43

KWIVER Documentation, Release 1

void use_stream (std::ostream *strm)
Write detections to an existing stream.

This method specifies the output stream to use for writing detections. Using a stream is handy when the
detections output is available in a stream format.
Parameters

¢ strm: output stream to use

void close ()
Close detection set file.

The currently open detection set file is closed. If there is no currently open file, then this method does
nothing.

virtual void write_set (const kwiver::vital::detected_object_set_sptr set, std::string const &im-
age_path) =0
Write detected object set.

This method writes the specified detected object set and image name to the currently open file.

Parameters
* set: Detected object set

* image_path: File path to image associated with the detections.

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: :draw_detected_object_set
An abstract base class for algorithms which draw tracks on top of images in various ways, for analyzing results.

Inherits from kwiver::vital::algorithm_def< draw_detected_object_set >

Subclassed by kwiver::vital::algorithm_impl< draw_detected_object_set, vital::algo::draw_detected_object_set
>

Public Functions

virtual kwiver::vital::image_container_sptr draw (kwiver::vital::detected_object_set_sptr detected_set,
kwiver::vital::image_container_sptr image) =0
Draw detected object boxes on Image.

This method draws the detections on a copy of the image. The input image is unmodified. The actual
boxes that are drawn are controlled by the configuration for the implementation.
Return Image with boxes and other annotations added.
Parameters
* detected_set: Set of detected objects

* image: Boxes are drawn in this image

44 Chapter 2. Architecture

KWIVER Documentation, Release 1

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: :draw_tracks
An abstract base class for algorithms which draw tracks on top of images in various ways, for analyzing results.

Inherits from kwiver::vital::algorithm_def< draw_tracks >

Subclassed by kwiver::vital::algorithm_impl< draw_tracks, vital::algo::draw_tracks >

Public Functions

virtual kwiver::vital::image_container_sptr draw (kwiver::vital::track_set_sptr display_set,
kwiver::vital::image_container_sptr_list image_data,
kwiver::vital::track_set_sptr comparison_set =
kwiver::vital::track_set_sptr ()) =0
Draw features tracks on top of the input images.

This process can either be called in an offline fashion, where all tracks and images are provided to the func-
tion on the first call, or in an online fashion where only new images are provided on sequential calls. This
function can additionally consume a second track set, which can optionally be used to display additional
information to provide a comparison between the two track sets.
Return a pointer to the last image generated
Parameters

* display_set: the main track set to draw

* image_data: alist of images the tracks were computed over

* comparison_set: optional comparison track set

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: :dynamic_configuration
Abstract algorithm for getting dynamic configuration values from an external source. This class represents an
interface to an external source of configuration values. A typical application would be an external U.IL. control
that is desired to control the performance of an algorithm by varying some of its configuration values.

Inherits from kwiver::vital::algorithm_def< dynamic_configuration >

Subclassed by kwiver::vital::algorithm_impl< dynamic_config_none, vital::algo::dynamic_configuration >

Public Functions

virtual void set_configuration (config_block_sptr config) =0
Set this algorithm’s properties via a config block.

2.1. Vital Architecture 45

KWIVER Documentation, Release 1

This method is called to pass a configuration to the algorithm. The implementation of this method should
be light-weight and only save the necessary config values. Defer any substantial processing in another
method.

Exceptions

* no_such_configuration_value_exception: Thrown if an expected configuration
value is not present.

* algorithm_configuration_exception: Thrown when the algorithm is given an invalid
config_block or is otherwise unable to configure itself.

Parameters

* config: The config_block instance containing the configuration parameters for this algo-
rithm

virtual bool check_configuration (config_block_sptr config) const =0

Check that the algorithm’s configuration config_block is valid.

This checks solely within the provided config_block and not against the current state of the instance.
This isn’t static for inheritance reasons.

Return true if the configuration check passed and false if it didn’t.

Parameters

* config: The config block to check configuration of.

virtual config_block_sptr get_dynamic_configuration () =0

Return dynamic configuration values.

This method returns dynamic configuration values. a valid config block is returned even if there are not
values being returned.

class kwiver::vital::algo: :estimate_canonical_transform

Algorithm for estimating a canonical transform for cameras and landmarks.

A canonical transform is a repeatable transformation that can be recovered from data. In this case we assume
at most a similarity transformation. If data sets P1 and P2 are equivalent up to a similarity transformation, then
applying a canonical transform to P1 and separately a canonical transform to P2 should bring the data into the
same coordinates.

Inherits from kwiver::vital::algorithm_def< estimate_canonical_transform >

Subclassed by kwiver::vital::algorithm_impl< estimate_canonical_transform, vi-
tal::algo::estimate_canonical_transform >

Public Functions

virtual kwiver::vital::similarity_d estimate_transform (kwiver::vital::camera_map_sptr

const cameras,
kwiver::vital::landmark_map_sptr const

)) o landmarks) const =0
Estimate a canonical similarity transform for cameras and points.

Return An estimated similarity transform mapping the data to the canonical space.

Note This algorithm does not apply the transformation, it only estimates it.

46

Chapter 2. Architecture

KWIVER Documentation, Release 1

Parameters

* cameras: The camera map containing all the cameras

* landmarks: The landmark map containing all the 3D landmarks
Exceptions

* algorithm_exception: When the data is insufficient or degenerate.

Public Static Functions

static std::string static_type_name ()
Name of this algo definition.

class kwiver::vital::algo: :estimate_essential_matrix
An abstract base class for estimating an essential matrix from matching 2D points.

Inherits from kwiver::vital::algorithm_def< estimate_essential_matrix >

Subclassed by kwiver::vital::algorithm_impl< estimate_essential_matrix, vital::algo::estimate_essential_matrix
>

Public Functions

essential_matrix_sptr estimate (const kwiver::vital::feature_set_sptr featl, const
kwiver::vital::feature_set_sptr feat2, const
kwiver::vital::match_set_sptr matches, const
kwiver::vital::camera_intrinsics_sptr call, const

kwiver::vital::camera_intrinsics_sptr cal2, std::vector<bool> &inliers,

double inlier_scale = 1.0) const
Estimate an essential matrix from corresponding features.

Parameters
* feat1l: the set of all features from the first image
* feat?2: the set of all features from the second image
* matches: the set of correspondences between feat! and feat2
* call: the intrinsic parameters of the first camera
* cal2: the intrinsic parameters of the second camera
* inliers: for each point pair, the value is true if this pair is an inlier to the estimate

e inlier_scale: error distance tolerated for matches to be inliers

essential_matrix_sptr est imate (const kwiver::vital::feature_set_sptr featl, const
kwiver::vital::feature_set_sptr feat2, const
kwiver::vital::match_set_sptr matches, const

kwiver::vital::camera_intrinsics_sptr cal, std::vector<bool> &in-

liers, double inlier_scale = 1.0) const
Estimate an essential matrix from corresponding features.

Parameters

* feat1: the set of all features from the first image

2.1. Vital Architecture 47

KWIVER Documentation, Release 1

* feat2: the set of all features from the second image

* matches: the set of correspondences between feat! and feat2

* cal: the intrinsic parameters, same for both cameras

* inliers: for each point pair, the value is true if this pair is an inlier to the estimate

e inlier_scale: error distance tolerated for matches to be inliers

virtual kwiver::vital::essential_matrix_sptr est imate (const std::vector<kwiver::vital::vector_2d>
&ptsl, const std::vector<kwiver::vital::vector_2d>
&pts2, const kwiver::vital::camera_intrinsics_sptr
cal, std::vector<bool> &inliers, double in-

)))) lier_scale = 1.0) const
Estimate an essential matrix from corresponding points.

Parameters
* ptsl: the vector or corresponding points from the first image
* pts2: the vector of corresponding points from the second image
* cal: the intrinsic parameters, same for both cameras
* inliers: for each point pair, the value is true if this pair is an inlier to the estimate

e inlier_scale: error distance tolerated for matches to be inliers

virtual kwiver::vital::essential_matrix_sptr est imate (const std::vector<kwiver::vital::vector_2d>
&ptsl, const std::vector<kwiver::vital::vector_2d>
&pts2, const kwiver::vital::camera_intrinsics_sptr
call, const kwiver::vital::camera_intrinsics_sptr
cal2, std::vector<bool> &inliers, double in-

)))) lier_scale = 1.0) const =0
Estimate an essential matrix from corresponding points.

Parameters
* ptsl: the vector or corresponding points from the first image
* pts2: the vector of corresponding points from the second image
* call: the intrinsic parameters of the first camera
* cal?2: the intrinsic parameters of the second camera
* inliers: for each point pa:wir, the value is true if this pair is an inlier to the estimate

e inlier_scale: error distance tolerated for matches to be inliers

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: :estimate_fundamental matrix
An abstract base class for estimating a fundamental matrix from matching 2D points.

Inherits from kwiver::vital::algorithm_def< estimate_fundamental_matrix >

48 Chapter 2. Architecture

KWIVER Documentation, Release 1

Subclassed

by kwiver::vital::algorithm_impl< estimate_fundamental_matrix, Vi-

tal::algo::estimate_fundamental_matrix >

Public Functions

fundamental_matrix_sptr est imate (const kwiver::vital::feature_set_sptr featl, const

kwiver::vital::feature_set_sptr feat2, const
kwiver::vital::match_set_sptr matches, std::vector<bool> &inliers,
double inlier_scale = 1.0) const

Estimate an fundamental matrix from corresponding features.

Parameters

feat1: the set of all features from the first image

feat2: the set of all features from the second image

matches: the set of correspondences between feat! and feat2

inliers: for each point pair, the value is true if this pair is an inlier to the estimate

inlier_scale: error distance tolerated for matches to be inliers

virtual kwiver::vital::fundamental_matrix_sptr est imate (const std::vector<kwiver::vital::vector_2d>

&ptsl, const
std::vector<kwiver::vital::vector_2d>

&pts2, std::vector<bool> &inliers, double
inlier_scale =1.0) const=0

Estimate an fundamental matrix from corresponding points.

Parameters

ptsl: the vector or corresponding points from the first image
pts2: the vector of corresponding points from the second image
inliers: for each point pair, the value is true if this pair is an inlier to the estimate

inlier_ scale: error distance tolerated for matches to be inliers

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: :estimate_homography
An abstract base class for estimating a homography from matching 2D points.

Inherits from kwiver::vital::algorithm_def< estimate_homography >

Subclassed by kwiver::vital::algorithm_impl< estimate_homography, vital::algo::estimate_homography >

2.1. Vital Architecture 49

KWIVER Documentation, Release 1

Public Functions

homography_sptr est imate (kwiver::vital::feature_set_sptr featl, kwiver::vital::feature_set_sptr fear2,
kwiver::vital::match_set_sptr matches, std::vector<bool> &inliers, double

) inlier_scale = 1.0) const
Estimate a homography matrix from corresponding features.

If estimation fails, a NULL-containing sptr is returned

Parameters
* featl: the set of all features from the source image
* feat?2: the set of all features from the destination image
* matches: the set of correspondences between feat! and feat2

e inliers: for each match in matcher, the value is true if this pair is an inlier to the homography
estimate

e inlier_scale: error distance tolerated for matches to be inliers

virtual kwiver::vital::homography_sptr est imate (const std::vector<kwiver::vital::vector_2d> &ptsl,
const std::vector<kwiver::vital::vector_2d> &pts2,
std::vector<bool> &inliers, double inlier_scale =

1.0) const=0
Estimate a homography matrix from corresponding points.

If estimation fails, a NULL-containing sptr is returned

Parameters
* ptsl: the vector or corresponding points from the source image
* pts2: the vector of corresponding points from the destination image
e inliers: for each point pair, the value is true if this pair is an inlier to the homography estimate

e inlier_scale: error distance tolerated for matches to be inliers

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: :estimate_similarity transform
Algorithm for estimating the similarity transform between two point sets.

Inherits from kwiver::vital::algorithm_def< estimate_similarity_transform >

Subclassed by kwiver::vital::algorithm_impl< estimate_similarity_transform, vi-
tal::algo::estimate_similarity_transform >

50 Chapter 2. Architecture

KWIVER Documentation, Release 1

Public Functions

virtual kwiver::vital::similarity_d estimate_transform (std::vector<kwiver::vital::vector_3d>
const &from,
std::vector<kwiver::vital::vector_3d>

) o const &70) const=0
Estimate the similarity transform between two corresponding point sets.

Return An estimated similarity transform mapping 3D points in the £ rom space to points in the t o space.
Parameters
» from: List of length N of 3D points in the from space.

* to: List of length N of 3D points in the to space.

Exceptions
* algorithm_exception: When the from and to point sets are misaligned, insufficient or
degenerate.
similarity_d estimate_transform (std::vector<kwiver::vital::camera_sptr> const &from,

std::vector<kwiver::vital::camera_sptr> const &f0) const
Estimate the similarity transform between two corresponding sets of cameras.

Return An estimated similarity transform mapping camera centers in the £ rom space to camera centers
in the to space.
Parameters
» from: List of length N of cameras in the from space.

* to: List of length N of cameras in the to space.

Exceptions
* algorithm_exception: When the from and to point sets are misaligned, insufficient or
degenerate.
similarity_d estimate_transform (std::vector<kwiver::vital::landmark_sptr> const &from,

std::vector<kwiver::vital::landmark_sptr> const &70) const
Estimate the similarity transform between two corresponding sets of landmarks.

Return An estinated similarity transform mapping landmark locations in the from space to located in the
to space.
Parameters
» from: List of length N of landmarks in the from space.

* to: List of length N of landmarks in the to space.

Exceptions
* algorithm_exception: When the from and to point sets are misaligned, insufficient or
degenerate.
similarity_d estimate_transform (kwiver::vital::camera_map_sptr const from,

kwiver::vital::camera_map_sptr const 7o) const
Estimate the similarity transform between two corresponding camera maps.

2.1. Vital Architecture 51

KWIVER Documentation, Release 1

Cameras with corresponding frame IDs in the two maps are paired for transform estimation. Cameras with
no corresponding frame ID in the other map are ignored. An algorithm_exception is thrown if there are no
shared frame IDs between the two provided maps (nothing to pair).

Return An estimated similarity transform mapping camera centers in the £ rom space to camera centers
in the t o space.
Exceptions

* algorithm_exception: When the from and to point sets are misaligned, insufficient or
degenerate.

Parameters
* from: Map of original cameras, sharing N frames with the transformed cameras, where N > 0.

* to: Map of transformed cameras, sharing N frames with the original cameras, where N > 0.

similarity_d estimate_transform (kwiver::vital::landmark_map_sptr const from,

kwiver::vital::landmark_map_sptr const 7o) const
Estimate the similarity transform between two corresponding landmark maps.

Landmarks with corresponding frame IDs in the two maps are paired for transform estimation. Landmarks
with no corresponding frame ID in the other map are ignored. An algoirithm_exception is thrown if there
are no shared frame IDs between the two provided maps (nothing to pair).

Return An estimated similarity transform mapping landmark centers in the £ rom space to camera centers
in the t o space.
Exceptions

* algorithm_exception: When the from and to point sets are misaligned, insufficient or
degenerate.

Parameters

* from: Map of original landmarks, sharing N frames with the transformed landmarks, where N >
0.

* to: Map of transformed landmarks, sharing N frames with the original landmarks, where N > 0.

Public Static Functions

static std::string static_type_name ()

Name of this algo definition.

class kwiver::vital::algo: :extract_descriptors

An abstract base class for extracting feature descriptors.
Inherits from kwiver::vital::algorithm_def< extract_descriptors >

Subclassed by kwiver::vital::algorithm_impl< extract_descriptors, vital::algo::extract_descriptors >,
kwiver::arrows::ocv::extract_descriptors

52

Chapter 2. Architecture

KWIVER Documentation, Release 1

Public Functions

virtual kwiver::vital::descriptor_set_sptr ext ract (kwiver::vital::image_container_sptr im-
age_data, kwiver::vital::feature_set_sptr features,
kwiver::vital::image_container_sptr image_mask =

kwiver::vital::image_container_sptr ()) const =0
Extract from the image a descriptor corresoponding to each feature.

Return a set of feature descriptors
Parameters
* image_data: contains the image data to process
* features: the feature locations at which descriptors are extracted

* image_mask: Mask image of the same dimensions as image_data where positive values
indicate regions of image_data to consider.

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: : feature_descriptor_io
An abstract base class for reading and writing feature and desriptor sets.

This class represents an abstract interface for reading and writing feature and descriptor sets
Inherits from kwiver::vital::algorithm_def< feature_descriptor_io >

Subclassed by kwiver::vital::algorithm_impl< feature_descriptor_io, vital::algo::feature_descriptor_io >
Public Functions

void load (std::string const &filename, feature_set_sptr &feat, descriptor_set_sptr &desc) const
Load features and descriptors from a file.
Exceptions
* kwiver::vital::path_not_exists: Thrown when the given path does not exist.

* kwiver::vital::path_not_a_file: Thrown when the given path does not point to a
file (i.e. it points to a directory).

Parameters
* filename: the path to the file the load
e feat: the set of features to load from the file

* desc: the set of descriptors to load from the file

void save (std::string const &filename, feature_set_sptr feat, descriptor_set_sptr desc) const
Save features and descriptors to a file.

Saves features and/or descriptors to a file. Either feat or desc may be Null, but not both. If both feat
and desc are provided then the must be of the same size.

2.1. Vital Architecture 53

KWIVER Documentation, Release 1

Exceptions

e kwiver::vital::path_not_exists: Thrown when the expected containing directory of
the given path does not exist.

* kwiver::vital::path_not_a_directory: Thrown when the expected containing di-
rectory of the given path is not actually a directory.

Parameters
* filename: the path to the file to save
» feat: the set of features to write to the file

* desc: the set of descriptors to write to the file

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo::filter features
Abstract base class for feature set filter algorithms.

Inherits from kwiver::vital::algorithm_def< filter_features >

Subclassed by kwiver::vital::algorithm_impl< filter_features_magnitude, vital::algo::filter_features >,
kwiver::vital::algorithm_impl< filter_features_scale, vital::algo::filter_features >

Public Functions

feature_set_sptr £ilter (kwiver::vital::feature_set_sptr input) const
Filter a feature set and return a subset of the features.

The default implementation call the pure virtual function filter(feature_set_sptr feat, std::vector<unsigned
int> &indices) const

Return a filtered version of the feature set (simple_feature_set)
Parameters

e input: The feature set to filter

std::pair<feature_set_sptr, descriptor_set_sptr> £ilter (kwiver::vital::feature_set_sptr feat,
kwiver::vital::descriptor_set_sptr descr)
const

Filter a feature_set and its coresponding descriptor_set.

The default implementation calls filter(feature_set_sptr feat, std::vector<unsigned int> &indices) const
using with feat and then uses the resulting indices to construct a simple_descriptor_set with the
corresponding descriptors.

Return a pair of the filtered features and descriptors
Parameters
» feat: The feature set to filter

* descr: The parallel descriptor set to filter

54 Chapter 2. Architecture

KWIVER Documentation, Release 1

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo::filter_ tracks
Abstract base class for track set filter algorithms.

Inherits from kwiver::vital::algorithm_def< filter_tracks >

Subclassed by kwiver::vital::algorithm_impl< filter_tracks, vital::algo::filter_tracks >

Public Functions

virtual kwiver::vital::track_set_sptr £ilter (kwiver::vital::track_set_sptr input) const =0
Filter a track set and return a subset of the tracks.
Return a filtered version of the track set (simple_track_set)
Parameters

* input: The track set to filter

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: : formulate_query
An abstract base class for formulating descriptors for queries.

Inherits from kwiver: :vital::algorithm_def< formulate_guery >

Subclassed by kwiver::vital::algorithm_impl< formulate_query_core, vital::algo::formulate_query >
Public Functions
void set_configuration (kwiver::vital::config_block_sptr config)

Set this algorithm’s properties via a config block.

bool check_configuration (kwiver::vital::config_block_sptr config) const
Check that the algorithm’s currently configuration is valid.

Check that the algorithm’s current configuration is valid.
virtual kwiver::vital::track_descriptor_set_sptr formulate (kwiver::vital::descriptor_request_sptr

request) =0
Formulate query.

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

2.1. Vital Architecture 55

KWIVER Documentation, Release 1

class kwiver::vital::algo: :image_filter

Abstract base class for feature set filter algorithms.
Inherits from kwiver::vital::algorithm_def< image_filter >

Subclassed by kwiver::vital::algorithm_impl< matlab_image_filter, vital::algo::image_filter >

Public Functions

virtual kwiver::vital::image_container_sptr £ilter (kwiver::vital::image_container_sptr image_data)
=0
Filter a input image and return resulting image.
This method implements the filtering operation. The resulting image should be the same size as the input
image.
Return a filtered version of the input image

Parameters

* image_data: Image to filter.

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: :image_io

An abstract base class for reading and writing images.
This class represents an abstract interface for reading and writing images.
Inherits from kwiver::vital::algorithm_def< image_io >

Subclassed by kwiver::vital::algorithm_impl< image_io, vital::algo::image_io >,
kwiver::vital::algorithm_impl< image_io_dummy, kwiver::vital::algo::image_io >

Public Functions

image_container_sptr 1oad (std::string const &filename) const
Load image from the file.
Return an image container refering to the loaded image
Exceptions
* kwiver::vital::path_not_exists: Thrown when the given path does not exist.

e kwiver::vital::path_not_a_file: Thrown when the given path does not point to a
file (i.e. it points to a directory).

Parameters

* filename: the path to the file the load

56

Chapter 2. Architecture

KWIVER Documentation, Release 1

void save (std::string const &filename, kwiver::vital::image_container_sptr data) const
Save image to a file.

Image file format is based on file extension.

Exceptions

* kwiver::vital::path_not_exists: Thrown when the expected containing directory of
the given path does not exist.

e kwiver::vital::path_not_a_directory: Thrown when the expected containing di-
rectory of the given path is not actually a directory.

Parameters
e filename: the path to the file to save

* data: the image container refering to the image to write

Public Static Functions

static std::string static_type_ name ()
Return the name of this algorithm.

class kwiver::vital::algo: :image_object_detector
Image object detector base class/.

Inherits from kwiver::vital::algorithm_def< image_object_detector >

Subclassed by kwiver::vital::algorithm_impl< darknet_detector, vital::algo::image_object_detector
>, kwiver::vital::algorithm_impl< hough_circle_detector, vital::algo::image_object_detector >,
kwiver::vital::algorithm_impl< matlab_image_object_detector, vital::algo::image_object_detector >

Public Functions

virtual detected_object_set_sptr detect (image_container_sptr image_data) const = (0
Find all objects on the provided image.

This method analyzes the supplied image and along with any saved context, returns a vector of detected
image objects.

Return vector of image objects found

Parameters

* image_data: the image pixels

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo::initialize_cameras_landmarks
An abstract base class for initialization of cameras and landmarks.

Inherits from kwiver::vital::algorithm_def< initialize_cameras_landmarks >

2.1. Vital Architecture 57

KWIVER Documentation, Release 1

Subclassed by kwiver::vital::algorithm_impl< initialize_cameras_landmarks, Vi-
tal::algo::initialize_cameras_landmarks >

Public Types

typedef std::function<bool (kwiver::vital::camera_map_sptr, kwiver::vital::landmark_map_sptr) >

callback_t
Typedef for the callback function signature.

Public Functions

virtual void initialize (kwiver::vital::camera_map_sptr &cameras,
kwiver::vital::landmark_map_sptr &landmarks,
kwiver::vital::feature_track_set_sptr tracks,
kwiver::vital::video_metadata_map_sptr metadata = nullptr) const =

0

Initialize the camera and landmark parameters given a set of feature tracks.
The algorithm creates an initial estimate of any missing cameras and landmarks using the available cam-
eras, landmarks, and feature tracks. It may optionally revise the estimates of exisiting cameras and land-
marks.
Parameters

e cameras: the cameras to initialize

¢ landmarks: the landmarks to initialize

e tracks: the feature tracks to use as constraints

* metadata: the frame metadata to use as constraints

void set_callback (callback_t cb)
Set a callback function to report intermediate progress.

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: :match_features
An abstract base class for matching feature points.

Inherits from kwiver::vital::algorithm_def< match_features >

Subclassed by kwiver::vital::algorithm_impl< match_features, vital::algo::match_features
>, kwiver::vital::algorithm_impl< match_features_constrained, vital::algo::match_features >,
kwiver::vital::algorithm_impl< match_features_fundamental_matrix, vital::algo::match_features
>, kwiver::vital::algorithm_impl< match_features_homography, vital::algo::match_features >,

kwiver::arrows::ocv::match_features

58 Chapter 2. Architecture

KWIVER Documentation, Release 1

Public Functions

virtual kwiver::vital::match_set_sptr match (kwiver::vital::feature_set_sptr featl,
kwiver::vital::descriptor_set_sptr descl,
kwiver::vital::feature_set_sptr feat2,

kwiver::vital::descriptor_set_sptr desc2) const =0
Match one set of features and corresponding descriptors to another.

Return a set of matching indices from feat! to feat2
Parameters
* feat1: the first set of features to match
* descl: the descriptors corresponding to featl
* feat?2: the second set fof features to match

* desc2: the descriptors corresponding to feat2

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: :optimize_cameras
Abstract algorithm definition base for optimizing cameras.

Inherits from kwiver: :vital::algorithm_def< optimize_cameras >

Subclassed by kwiver::vital::algorithm_impl< optimize_cameras, vital::algo::optimize_cameras >

Public Functions

void optimize (kwiver::vital::camera_map_sptr &cameras, kwiver::vital::feature_track_set_sptr
tracks, kwiver::vital::landmark_map_sptr landmarks,

kwiver::vital::video_metadata_map_sptr metadata = nullptr) const
Optimize camera parameters given sets of landmarks and feature tracks.

We only optimize cameras that have associating tracks and landmarks in the given maps. The default
implementation collects the corresponding features and landmarks for each camera and calls the single
camera optimize function.
Exceptions

* invalid_value: When one or more of the given pointer is Null.
Parameters

* cameras: Cameras to optimize.

* tracks: The feature tracks to use as constraints.

* landmarks: The landmarks the cameras are viewing.

* metadata: The optional metadata to constrain the optimization.

2.1. Vital Architecture 59

KWIVER Documentation, Release 1

virtual void optimize (kwiver::vital::camera_sptr &camera, const
std::vector<kwiver::vital::feature_sptr> &features,
const std::vector<kwiver::vital::landmark_sptr> &land-
marks, kwiver::vital::video_metadata_vector metadata =

kwiver::vital::video_metadata_vector()) const =0
Optimize a single camera given corresponding features and landmarks.

This function assumes that 2D features viewed by this camera have already been put into correspondence
with 3D landmarks by aligning them into two parallel vectors
Parameters

* camera: The camera to optimize.

* features: The vector of features observed by camera to use as constraints.

* landmarks: The vector of landmarks corresponding to features.

* metadata: The optional metadata to constrain the optimization.

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm definition.

class kwiver::vital::algo: :refine_detections
Image object detector base class/.

Inherits from kwiver::vital::algorithm_def< refine_detections >

Subclassed by kwiver::vital::algorithm_impl< refine_detections_write_to_disk, vital::algo::refine_detections >

Public Functions

virtual detected_object_set_sptr refine (image_container_sptr image_data, detected_object_set_sptr

detections) const =0
Refine all object detections on the provided image.

This method analyzes the supplied image and and detections on it, returning a refined set of detections.

Return vector of image objects refined
Parameters
* image_data: the image pixels

* detections: detected objects

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: :split_image
An abstract base class for converting base image type.

Inherits from kwiver::vital::algorithm_def< split_image >

Subclassed by kwiver::vital::algorithm_impl< split_image, vital::algo::split_image >

60 Chapter 2. Architecture

KWIVER Documentation, Release 1

Public Functions

void set_configuration (kwiver::vital::config_block_sptr config)
Set this algorithm’s properties via a config block.

bool check_configuration (kwiver::vital::config_block_sptr config) const
Check that the algorithm’s currently configuration is valid.

Check that the algorithm’s current configuration is valid.

virtual std::vector<kwiver::vital::image_container_sptr> split (kwiver::vital::image_container_sptr
img) const =0
Split image.

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: :track_descriptor_set_input
Read detected object sets.

This class is the abstract base class for the detected object set writer.

Detection sets from multiple images are stored in a single file with enough information to recreate a unique
image identifier, usually the file name, and an associated set of track descriptors.

Inherits from kwiver::vital::algorithm_def< track_descriptor_set_input >

Public Functions

void open (std::string const &filename)
Open a file of track descriptor sets.

This method opens a track descriptor set file for reading.

Parameters
* filename: Name of file to open
Exceptions
e kwiver::vital::path_not_exists: Thrown when the given path does not exist.

* kwiver::vital::path_not_a_file: Thrown when the given path does not point to a
file (i.e. it points to a directory).

e kwiver::vital::file_not_found_exception:

void use_stream (std::istream *strm)
Read track descriptors from an existing stream.

This method specifies the input stream to use for reading track descriptors. Using a stream is handy when
the track descriptors are available in a stream format.
Parameters

* strm: input stream to use

2.1. Vital Architecture 61

KWIVER Documentation, Release 1

void close ()
Close track descriptor set file.

The currently open track descriptor set file is closed. If there is no currently open file, then this method
does nothing.

virtual bool read_set (kwiver::vital::track_descriptor_set_sptr &set, std::string &image_name) =0
Read next detected object set.

This method reads the next set of detected objects from the file. False is returned when the end of file is
reached.

Return true if track descriptors are returned, false if end of file.

Parameters

* set: Pointer to the new set of track descriptors. Set may be empty if there are no track descriptors
on an image.

* image_name: Name of the image that goes with the track descriptors. This string may be empty
depending on the source format.

bool at_eof () const
Determine if input file is at end of file.

This method reports the end of file status for a file open for reading.

Return true if file is at end.

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: :track_descriptor_set_output
Read and write detected object sets.

This class is the abstract base class for the detected object set reader and writer.

Detection sets from multiple images are stored in a single file with enough information to recreate a unique
image identifier, usually the file name, and an associated wet of track descriptors.

Inherits from kwiver::vital::algorithm_def< track_descriptor_set_output >

Subclassed by kwiver::vital::algorithm_impl< track_descriptor_set_output_csv, Vi-
tal::algo::track_descriptor_set_output >

Public Functions

void open (std::string const &filename)
Open a file of track descriptor sets.

This method opens a track descriptor set file for reading.

Parameters

e filename: Name of file to open

62 Chapter 2. Architecture

KWIVER Documentation, Release 1

Exceptions
* kwiver::vital::path_not_exists: Thrown when the given path does not exist.

e kwiver::vital::path_not_a_file: Thrown when the given path does not point to a
file (i.e. it points to a directory).

void use_stream (std::ostream *strm)
Write track descriptors to an existing stream.

This method specifies the output stream to use for reading track descriptors. Using a stream is handy when
the track descriptors are available in a stream format.
Parameters

* strm: output stream to use

void close ()
Close track descriptor set file.

The currently open track descriptor set file is closed. If there is no currently open file, then this method
does nothing.

virtual void write_set (const kwiver::vital::track_descriptor_set_sptr set, std::string const &im-
age_path) =0
Write detected object set.

This method writes the specified detected object set and image name to the currently open file.

Parameters
* set: Detected object set

* image_path: File path to image associated with the track descriptors.

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: :track_features
An abstract base class for tracking feature points.

Inherits from kwiver::vital::algorithm_def< track_features >

Subclassed by kwiver::vital::algorithm_impl< track_features_core, vital::algo::track_features >

Public Functions

virtual feature_track_set_sptr track (feature_track_set_sptr prev_tracks, unsigned int frame_number,
image_container_sptr image_data, image_container_sptr mask =
image_container_sptr ()) const =0
Extend a previous set of feature tracks using the current frame.

Return an updated set of feature tracks including the current frame

Exceptions

2.1. Vital Architecture 63

KWIVER Documentation, Release 1

* image_size_mismatch_exception: When the given non-zero mask image does not
match the size of the dimensions of the given image data.

Parameters
* prev_tracks: the feature tracks from previous tracking steps
e frame_number: the frame number of the current frame
* image_data: the image pixels for the current frame

* mask: Optional mask image that uses positive values to denote regions of the input image to
consider for feature tracking. An empty sptr indicates no mask (default value).

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo::train_detector
An abstract base class for training object detectors.

Inherits from kwiver::vital::algorithm_def< train_detector >

Subclassed by kwiver::vital::algorithm_impl< darknet_trainer, vital::algo::train_detector >

Public Functions

virtual void train_from_disk (std::vector<std::string> train_image_names,
std::vector<kwiver::vital::detected_object_set_sptr>
train_groundtruth, std::vector<std::string> fest_image_names,

std::vector<kwiver::vital::detected_object_set_sptr>

test_groundtruth) =0
Train a detection model given a list of images and detections.

This varient is geared towards offline training.

Parameters
* train_image_list: list of train image filenames
* train_groundtruth: annotations loaded for each image
* test_image_list: list of test image filenames

* test_groundtruth: annotations loaded for each image

void train_from_memory (std::vector<kwiver::vital::image_container_sptr> images,

std::vector<kwiver::vital::detected_object_set_sptr> groundtruth)
Train a detection model given images and detections.

This varient is geared towards online training, and is not required to be defined.

Exceptions
* runtime_exception: if not defined.
Parameters

* images: vector of input images

64 Chapter 2. Architecture

KWIVER Documentation, Release 1

* groundtruth: annotations loaded for each image

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: :triangulate_landmarks
An abstract base class for triangulating landmarks.

Inherits from kwiver::vital::algorithm_def< triangulate_landmarks >

Subclassed by kwiver::vital::algorithm_impl< triangulate_landmarks, vital::algo::triangulate_landmarks >

Public Functions

virtual void triangulate (kwiver::vital::camera_map_sptr cameras,
kwiver::vital::feature_track_set_sptr tracks,

kwiver::vital::landmark_map_sptr &landmarks) const =0
Triangulate the landmark locations given sets of cameras and feature tracks.

This function only triangulates the landmarks with indices in the landmark map and which have support in
the feature tracks and cameras

Parameters
* cameras: the cameras viewing the landmarks
* tracks: the feature tracks to use as constraints

* landmarks: the landmarks to triangulate

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: :uuid_factory
Abstract base class for creating uuid’s.

Inherits from kwiver::vital::algorithm_def< uuid_factory >

Subclassed by kwiver::vital::algorithm_impl< uuid_factory_uuid, vital::algo::uuid_factory >

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

class kwiver::vital::algo: :video_input
An abstract base class for reading videos.

This class represents an abstract interface for reading videos. Once the video is opened, the frames are returned
in order.

Use cases:

2.1. Vital Architecture 65

KWIVER Documentation, Release 1

1) Reading video from a directory of images.
2) Reading video frames from a list of file names.
3) Reading video from mpeg/video file (one of many formats) (e.g. FMV)

4) Reading video from mpeg/video file (one of many formats) with cropping (e.g. WAMI). This includes Pro-
viding geostationary images by cropping to a specific region from an image. This may result in no data if the
geo region and image do not intersect.

5) Reading video from network stream. (RTSP) This may result in unexpected end of video conditions and
network related disruptions (e.g. missing frames, connection terminating, ...)

A note about the basic capabilities:

HAS_EOV - This capability is set to true if the video source can determine end of video. This is usually the
case if the video is being read from a file, but may not be known if the video is coming from a streaming source.

HAS_FRAME_NUMBERS - This capability is set to true if the video source supplies frame numbers. If the
video source specifies a frame number, then that number is used when forming a time stamp. If the video does
not supply a frame number, the time stamp will not have a frame number.

HAS_FRAME_TIME - This capability is set to true if the video source supplies a frame time. If a frame time
is supplied, it is made available in the time stamp for that frame. If the frame time is not supplied, then the
timestamp will hot have the time set.

HAS_FRAME_DATA - This capability is set to true if the video source supplies frame images. It may seem
strange for a video input algorithm to not supply image data, but happens with a reader that only supplies the
metadata.

HAS_ABSOLUTE_FRAME_TIME - This capability is set to true if the video source supplies an absolute,
rather than relative frame time. This capability is not set if an absolute frame time can not be found, or if the
absolute frame time is configured as “none”.

HAS_METADATA - This capability is set if the video source supplies some type of metadata. The metadata
could be in 0601 or 0104 data formats or a different source.

HAS_TIMEOUT - This capability is set if the implementation supports the timeout parameter on the
next_frame() method.

All implementations must support the basic traits, in that they are registered with a true or false value. Ad-
ditional implementation specific (extended) traits may be added. The application should first check to see if a
extended trait is registered by calling has_trait() since the actual implementation is set by a configuration entry
and not directly known by the application.

Extended capabilities can be created to publish capabilities of non-standard video sources. These capabilities
should be namespaced using the name (or abbreviation) of the concrete algorithm followed by the abbreviation
of the capability.

Inherits from kwiver::vital::algorithm_def< video_input >

Subclassed by kwiver::vital::algorithm_impl< video_input_filter, vital::algo::video_input
>, kwiver::vital::algorithm_impl< video_input_image_list, vital::algo::video_input >,
kwiver::vital::algorithm_impl< video_input_pos, vital::algo::video_input >, kwiver::vital::algorithm_impl<
video_input_split, vital::algo::video_input >, kwiver::vital::algorithm_impl< vidl_ffmpeg_video_input,
vital::algo::video_input >

Public Functions

virtual void open (std::string video_name) =0
Open a video stream.

66

Chapter 2. Architecture

KWIVER Documentation, Release 1

This method opens the specified video stream for reading. The format of the name depends on the concrete
implementation. It could be a file name or it could be a URL.

Capabilities are set in this call, so they are available after.
Note Once a video is opened, it starts in an invalid state (i.e. before the first frame of video). You must
call next_frame () to step to the first frame of video before calling frame image ().
Parameters
e video_name: Identifier of the video stream.
Exceptions

* exception: if open failed

virtual void close () =0
Close video stream.

Close the currently opened stream and release resources. Closing a stream that is already closed does not
cause a problem.

virtual bool end _of wvideo () const =0
Return end of video status.

This method returns the end-of-video status of the input video. true is returned if the last frame has been
returned.

This method will always return false for video streams that have no ability to detect end of video, such as

network streams.

Return true if at end of video, false otherwise.

virtual bool good () const =0
Check whether state of video stream is good.

This method checks the current state of the video stream to see if it is good. A stream is good if it
refers to a valid frame such that calls to frame image () and frame _metadata () are expected to
return meaningful data. After calling open () the initial video state is not good until the first call to
next__frame ().

Return true if video stream is good, false if not good.

virtual bool next_ frame (kwiver::vital::timestamp &ts, uint32_t timeout = 0) =0
Advance to next frame in video stream.

This method advances the video stream to the next frame, making the image and metadata available. The
returned timestamp is for new current frame.

The timestamp returned may be missing either frame number or time or both, depending on the actual
implementation.

Calling this method will make a new image and metadata packets available. They can be retrieved by
calling frame_image() and frame_metadata().

Check the HAS_TIMEOUT capability from the concrete implementation to see if the timeout feature is
supported.

If the video input is already an end, then calling this method will return false.

Return true if frame returned, false if end of video.

2.1. Vital Architecture 67

KWIVER Documentation, Release 1

Parameters
* ts: Time stamp of new frame.
* timeout: Number of seconds to wait. 0 = no timeout.
Exceptions
* video_input_timeout_exception: when the timeout expires.

* video_stream_exception: when there is an error in the video stream.

virtual kwiver::vital::image_container_sptr £rame_image () =0
Get current frame from video stream.

This method returns the image from the current frame. If the video input is already an end, then calling
this method will return a null pointer.

This method is idempotent. Calling it multiple times without calling next_frame() will return the same
image.

Return Pointer to image container.

Exceptions

* video_stream_exception: when there is an error in the video stream.

virtual kwiver::vital::video_metadata_vector frame_metadata () =0
Get metadata collection for current frame.

This method returns the metadata collection for the current frame. It is best to call this after calling
next_frame() to make sure the metadata and video are synchronized and that no metadata collections are
lost.

Metadata typically occurs less frequently than video frames, so if you call next_frame() and
Jframe_metadata() together while processing a video, there may be times where no metadata is returned.
In this case an empty metadata vector will be returned.

Also note that the metadata collection contains a timestamp that can be used to determine where the
metadata fits in the video stream.

In video streams without metadata (as determined by the stream capability), this method may return and
empty vector, indicating no new metadata has been found.

Calling this method at end of video will return an empty metadata vector.

This method is idempotent. Calling it multiple times without calling next_frame() will return the same
metadata.

Return Vector of metadata pointers.

Exceptions

* video_stream_exception: when there is an error in the video stream.

algorithm_capabilities const &get_implementation_capabilities () const
Return capabilities of concrete implementation.

This method returns the capabilities for the currently opened video.

Return Reference to supported video capabilities.

68 Chapter 2. Architecture

KWIVER Documentation, Release 1

Public Static Functions

static std::string static_type_name ()
Return the name of this algorithm.

Arrow Architecture

Arrows is the collection of plugins that provides implementations of the algorithms declared in Vital. Each arrow
can be enabled or disabled in build process through CMake options. Most arrows bring in additional third-party
dependencies and wrap the capabilities of those libraries to make them accessible through the Vital APIs. The code in
Arrows also converts or wrap data types from these external libraries into Vital data types. This allows interchange of
data between algorithms from different arrows using Vital types as the intermediary.

Capabilities are currently organized into Arrows based on what third party library they require. However, this arrange-
ment is not required and may change as the number of algorithms and arrows grows. Some arrows, like core , require
no additional dependencies. The provided Arrows are:

Core
Burnout
Ceres

Bundle Adjust Algorithm

class kwiver: :arrows: :ceres: :bundle_adjust
A class for bundle adjustment of feature tracks using Ceres.

Inherits from kwiver::vital::algorithm_impl< bundle_adjust, vital::algo::bundle_adjust >
Public Functions

bundle_adjust ()
Constructor.

~bundle_adjust ()
Destructor.

config_block_sptr get_configuration () const
Get this algorithm’s configuration block .

void set_configuration (vital::config_block_sptr config)
Set this algorithm’s properties via a config block.

bool check_configuration (vital::config_block_sptr config) const
Check that the algorithm’s currently configuration is valid.

void optimize (vital::camera_map_sptr &cameras, vital::landmark_map_sptr &landmarks, vi-
tal::feature_track_set_sptr fracks, vital::video_metadata_map_sptr metadata = nullptr)

const
Optimize the camera and landmark parameters given a set of feature tracks.

Optimize the camera and landmark parameters given a set of tracks.

2.2. Arrow Architecture 69

KWIVER Documentation, Release 1

Parameters
* cameras: the cameras to optimize
* landmarks: the landmarks to optimize
e tracks: the feature tracks to use as constraints

* metadata: the frame metadata to use as constraints

void set_callback (callback_t cb)
Set a callback function to report intermediate progress.

bool trigger_callback ()
This function is called by a Ceres callback to trigger a kwiver callback.

class priv
Private implementation class.

Inherits from kwiver::arrows::ceres::solver_options, kwiver::arrows::ceres::camera_options

Public Functions

priv ()
Constructor.

Public Members

bool verbose
verbose output

LossFunctionType loss_function_type
the robust loss function type to use

double 1loss_function_scale
the scale of the loss function

camera_map::map_camera_t cams
the input cameras to update in place

landmark_map::map_landmark_t 1ms
the input landmarks to update in place

std::map<track_id_t, std::vector<double>> landmark_params
a map from track id to landmark parameters

std::map<frame_id_t, std::vector<double>> camera_params
a map from frame number to extrinsic parameters

std::vector<std::vector<double>> camera_intr_ params
vector of unique camera intrinsic parameters

std::map<frame_id_t, unsigned int> frame_to_intr_map
a map from frame number to index of unique camera intrinsics in camera_intr_params

StateCallback ceres_callback
the ceres callback class

vital::logger_handle_tm_logger
Logger handle.

70 Chapter 2. Architecture

KWIVER Documentation, Release 1

Optimize Cameras Algorithm
class kwiver: :arrows: :ceres: :optimize_cameras
A class for optimization of camera paramters using Ceres.

Inherits from kwiver::vital::algorithm_impl< optimize_cameras, vital::algo::optimize_cameras >

Public Functions

optimize_cameras ()
Constructor.

~optimize_cameras ()
Destructor.

optimize_cameras (const optimize_cameras &other)
Copy Constructor.

config_block_sptr get_configuration () const
Get this algorithm’s configuration block .

void set_configuration (vital::config_block_sptr config)
Set this algorithm’s properties via a config block.

bool check_configuration (vital::config_block_sptr config) const
Check that the algorithm’s currently configuration is valid.

void optimize (kwiver::vital::camera_map_sptr ~ &cameras, kwiver::vital::feature_track_set_sptr
tracks, kwiver::vital::landmark_map_sptr landmarks,

kwiver::vital::video_metadata_map_sptr metadata = nullptr) const
Optimize camera parameters given sets of landmarks and feature tracks.

We only optimize cameras that have associating tracks and landmarks in the given maps. The default
implementation collects the corresponding features and landmarks for each camera and calls the single
camera optimize function.
Exceptions

* invalid_value: When one or more of the given pointer is Null.
Parameters

* cameras: Cameras to optimize.

* tracks: The feature tracks to use as constraints.

* landmarks: The landmarks the cameras are viewing.

* metadata: The optional metadata to constrain the optimization.

void optimize (vital::camera_sptr &camera, const std::vector<vital::feature_sptr> &features, const
std::vector<vital::landmark_sptr> &landmarks, kwiver::vital::video_metadata_vector

metadata = kwiver::vital::video_metadata_vector()) const
Optimize a single camera given corresponding features and landmarks.

This function assumes that 2D features viewed by this camera have already been put into correspondence
with 3D landmarks by aligning them into two parallel vectors

Parameters

2.2. Arrow Architecture 71

KWIVER Documentation, Release 1

* camera: The camera to optimize.
* features: The vector of features observed by camera to use as constraints.
* landmarks: The vector of landmarks corresponding to features.

* metadata: The optional metadata to constrain the optimization.

class priv
Private implementation class.

Inherits from kwiver::arrows::ceres::solver_options, kwiver::arrows::ceres::camera_options

Public Functions

priv()
Constructor.

Public Members

bool verbose
verbose output

LossFunctionType loss_function_type
the robust loss function type to use

double loss_function_ scale
the scale of the loss function

vital::logger_handle_tm_logger
Logger handle.

Camera Position Smoothness Class

class kwiver: :arrows: :ceres: :camera_position_smoothness
Ceres camera smoothness functor.

Public Functions

camera_position_smoothness (const double smoothness)
Constructor.

template <typename T>
bool operator () (const T *const prev_pose, const T *const curr_pose, const T *const next_pose, T

» *residuals) const)
Position smoothness error functor for use in Ceres.

Parameters
* prev_pos: Camera pose data block at previous time
* curr_pos: Camera pose data block at current time

* next_pos: Camera pose data block at next time

72 Chapter 2. Architecture

KWIVER Documentation, Release 1

* residuals: Camera pose blocks contain 6 parameters: 3 for rotation(angle axis), 3 for cen-
ter Only the camera centers are used in this function to penalize the difference between current
position and the average between previous and next positions.

Public Static Functions

ceres::CostFunction *ecreate (const double s)
Cost function factory.

Camera Limit Forward Motion Class
class kwiver::arrows: :ceres::camera limit forward motion
Ceres camera limit forward motion functor.

This class is to reglarize camera motion to minimize the amount of motion in the camera looking direction. This
is useful with zoom lenses at long focal lengths where distance and zoom are ambiguous. Adding this constraint
allows the optimization to prefer fast zoom changes over fast position change.

Public Functions

camera_limit_forward motion (const double scale)
Constructor.

template <typename T>
bool operator () (const T *const posel, const T *const pose2, T *residuals) const
Camera forward motion error functor for use in Ceres.

Parameters
* posel: Camera pose data block at time 1
* pose2: Camera pose data block at time 2

* residuals: Camera pose blocks contain 6 parameters: 3 for rotation(angle axis), 3 for center

Public Members

double scale__
the magnitude of this constraint

Public Static Functions

ceres::CostFunction *create (const double s)
Cost function factory.

Distortion Poly Radial Class

class kwiver: :arrows: :ceres: :distortion_poly_radial
Class to hold to distortion function and traits.

2.2. Arrow Architecture 73

KWIVER Documentation, Release 1

Public Static Functions

template <typename T>
static void apply (const T *dist_coeffs, const T *source_xy, T *distorted_xy)
Function to apply polynomial radial distortion.
Parameters
e dist_coeffs: radial distortion coefficients (2)
* source_xy: 2D point in normalized image coordinates

* distorted_xy: 2D point in distorted normalized image coordinates

Distortion Poly Radial Tangential Class

class kwiver: :arrows: :ceres: :distortion_poly_radial_tangential
Class to hold to distortion function and traits.

Public Static Functions

template <typename T>
static void apply (const T *dist_coeffs, const T *source_xy, T *distorted_xy)
Function to apply polynomial radial and tangential distortion.
Parameters
* dist_coeffs: radial (3) and tangential (2) distortion coefficients
* source_xy: 2D point in normalized image coordinates

* distorted_xy: 2D point in distorted normalized image coordinates

Distortion Ratpoly Radial Tangential Class

class kwiver: :arrows: :ceres: :distortion_ratpoly radial_tangential
Class to hold to distortion function and traits.

Public Static Functions

template <typename T>
static void apply (const T *dist_coeffs, const T *source_xy, T *distorted_xy)
Function to apply rational polynomial radial and tangential distortion.
Parameters
* dist_coeffs: radial (6) and tangential (2) distortion coefficients
* source_xy: 2D point in normalized image coordinates

* distorted_xy: 2D point in distorted normalized image coordinates

74 Chapter 2. Architecture

KWIVER Documentation, Release 1

Create Cost Func Factory

KWIVER_ALGO_CERES_EXPORT::ceres::CostFunction *kwiver: :arrows: :ceres: :create_cost_func (LensDistortior
ldt,
dou-
ble
X,
dou-
ble

y)
Factory to create Ceres cost functions for each lens distortion type.

Darknet

Darknet is an open source neural network framework written in C and CUDA.

The following algorithm implementations use Darknet

darknet_detector . L
class kwiver: :arrows: :darknet: :darknet_detector

Inherits from kwiver::vital::algorithm_impl<
darknet_detector, Vi-
tal::algo::image_object_detector >

darknet_trainer , .
class kwiver: :arrows: :darknet: :darknet_trainer

Darknet Training Utility Class.
Inherits from kwiver::vital::algorithm_impl<
darknet_trainer, vital::algo::train_detector >

In the pipe files, you can tune the algorithm with these variables :
e darknet:thresh
e darknet:hier_thresh

 darknet:gpu_index
FAQ
I am running out of memory in CUDA... Try one or both of these suggestions: - Change the dark-

net/models/virat.cfg variables height,weight to smaller powers of 32 - Change the darknet/models/virat.cfg vari-
ables batch and subdivisions (make sure they are still the same)

Matlab

OpenCV

This arrow is a collection of vital algorithms implemented with the OpenCV API
This arrow can be built by enabling the KWIVER_ENABLE_OPENCV CMake flag

This arrow implements the following algorithms:

’ image_io ‘ split_image ‘

2.2. Arrow Architecture 75

KWIVER Documentation, Release 1

Algorithm Configuration

Each algoithm implementation has the option to expose configuration parameters. These parameters help define the
execution of the algoithm and are specific to this implementation.

Image 1/0

No configuration options provied

Split Image

No configuration options provided

Proj4
uuiD
VisCL
VXL

This arrow is a collection of vital algorithms implemented with the VXL API
This arrow can be built by enabling the KWIVER_ENABLE_VXL CMake flag

This arrow implements the following algorithms:

] image_io ‘ split_image

Algorithm Configuration

Each algoithm implementation has the option to expose configuration parameters. These parameters help define the
execution of the algoithm and are specific to this implementation.

Image 1/0
No configuration options provied
Split Image

No configuration options provided

Sprokit Architecture

Sprokit is a “Stream Processing Toolkit” that provides infrastructure for chaining together algorithms into pipelines
for processing streaming data sources. The most common use case of Sprokit is for video processing, but Sprokit is
data type agnostic and could be used for any type of streaming data. Sprokit allows the user to dynamically connect

76 Chapter 2. Architecture

KWIVER Documentation, Release 1

and configure a pipeline by chaining together processing nodes called “processes” into a directed graph with data
sources and sinks. Sprokit schedules the jobs to run each process and keep data flowing through pipeline. Sprokit also
allows processes written in Python to be interconnected with those written in C++.

Getting Started with sprokit

The central component of KWIVER is vital which supplies basic data types and fundimental alrogithms. In addition,
we use sprokit’s pipelining facilities to manage, integrate and run many of KWIVER’s modules and capabilities. To
see what modules (called processes in sprockit) are available, run the following command:

$ plugin_explorer --process -Db

Here’s a typical list of modules (note that as KWIVER expands, this list is likely to grow):
—- All process Factories
Factories that create type “sprokit::process”

Process type: frame_list_input Reads a list of image file names and generates stream of images and
associated time stamps

Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:

Process type:

Process type: detected_object_input Reads detected object sets from an input file. Detections read from the

stabilize_image Generate current-to-reference image homographies
detect_features Detect features in an image that will be used for stabilization
extract_descriptors Extract descriptors from detected features

feature_matcher Match extracted descriptors and detected features
compute_homography Compute a frame to frame homography based on tracks
compute_stereo_depth_map Compute a stereo depth map given two frames
draw_tracks Draw feature tracks on image

read_d_vector Read vector of doubles

refine_detections Refines detections for a given frame

image_object_detector Apply selected image object detector algorithm to incoming images.
image_filter Apply selected image filter algorithm to incoming images.
image_writer Write image to disk.

image_file_reader Reads an image file given the file name.

input file are grouped into sets for each image and individually returned.

Process type: detected_object_output Writes detected object sets to an output file. All detections are written

to the same file.

Process type: detected_object_filter Filters sets of detected objects using the detected_object_filter
algorithm.

Process type:

Process type: draw_detected_object_set Draws border around detected objects in the set using the selected

video_input Reads video files and produces sequential images with metadata per frame.

algorithm.

Process type:

Process type: track_descriptor_output Writes track descriptor sets to an output file. All descriptors are

track_descriptor_input Reads track descriptor sets from an input file.

written to the same file.

2.3. Sprokit Architecture

KWIVER Documentation, Release 1

Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:
Process type:

Process type:

image_viewer Display input image and delay

draw_detected_object_boxes Draw detected object boxes on images.

collate Collates data from multiple worker processes

distribute Distributes data to multiple worker processes

pass Pass a data stream through

sink Ignores incoming data

any_source A process which creates arbitrary data
const A process wth a const flag

const_number Outputs a constant number
data_dependent A process with a data dependent type
duplicate A process which duplicates input

expect A process which expects some conditions
feedback A process which feeds data into itself
flow_dependent A process with a flow dependent type
multiplication Multiplies numbers

multiplier_cluster A constant factor multiplier cluster
mutate A process with a mutable flag

numbers Outputs numbers within a range
orphan_cluster A dummy cluster

orphan A dummy process

print_number Print numbers to a file

shared A process with the shared flag

skip A process which skips input data

tagged_flow_dependent A process with a tagged flow dependent types

take_number Print numbers to a file
take_string Print strings to a file

tunable A process with a tunable parameter

Process type: input_adapter Source process for pipeline. Pushes data items into pipeline ports. Ports
are dynamically created as needed based on connections specified in the pipeline file.

Process type: output_adapter Sink process for pipeline. Accepts data items from pipeline ports. Ports
are dynamically created as needed based on connections specified in the pipeline file.

Process type: template Description of process. Make as long as necessary to fully explain what the

process does and how to use it. Explain specific algorithms used, etc.
Process type: kw_archive_writer Writes kw archives
Process type: test_python_process A test Python process

Process type: pyprint_number A Python process which prints numbers

78 Chapter 2. Architecture

KWIVER Documentation, Release 1

This is the list of modules that can be included in a Sprokit pipeline. We’re going to use the numbers module and
the the print_number module to create a very simple pipeline. To learn more about the numbers module we’ll
again use plugin_explorer this time to get details on a particular module. For numbers we’ll use the following
command:

$ plugin_explorer —--process —--type numbers -d —--config
Factories that create type "sprokit::process"

Process type: numbers

Description: Outputs numbers within a range
Properties: _no_reentrant,
—-— Configuration —--
Name : end
Default : 100
Description: The value to stop counting at.
Tunable : no
Name : start
Default I
Description: The value to start counting at.
Tunable : no

Input ports:
Output ports:

Name : number
Type : integer
Flags : _required,

Description: Where the numbers will be available.

And for print_number, we’ll use:

$ plugin_explorer —--process --type print_number -d --config
Factories that create type "sprokit::process"

Process type: print_number

Description: Print numbers to a file
Properties: _no_reentrant,
—-— Configuration --
Name ¢ output
Default
Description: The path of the file to output to.
Tunable : no

Input ports:

Name : number
Type : integer
Flags : _required,

Description: Where numbers are read from.

Output ports:

The output of these commands tells us enough about each process to construct a Sprockit ”.pipe” file that defines a
processing pipeline. In particular we’ll need to know how to configure each process (the “Configuration”) and how
they can be hooked together (the input and output “Ports”).

2.3. Sprokit Architecture 79

KWIVER Documentation, Release 1

KWIVER comes with a sample sprokit/pipelines/number_flow.pipe file that
configures and connects the pipeline so that the numbers process will generate a set of integers from 1 to 99 and the
print_number process will write those to a file called numbers.txt. Of particular interest is the section at the
end of the file that actually “hooks up” the pipeline.

To run the pipeline, we’ll use the Sprokit pipeline_runner command:

$ pipeline_runner -p </path/to/kwiver/source>/sprokit/pipelines/number_flow.pipe

After the pipeline completes, you should find a file, numbers. txt, in your working directory.

Python Processes

One of KWIVER’s great strengths (as provided by sprokit) is the ability to create hybrid pipelines which
combine C++ and Python processes in the same pipeline. This greatly facilitates prototyping complex pro-
cessing pipelines. To test this out we’ll still use the numbers process, but we’ll use a Python ver-
sion of the print_number process called kw_print_number_process the code for which can be seen
in sprokit/processes/python/kw_print_number_process.py.
As usual, we can lean about this process with the following command:

$ plugin_explorer —--process --type kw_print_number_process -d —--config

Process type: kw_print_number_process
Description: A Simple Kwiver Test Process

Properties: _no_reentrant, _python
Configuration:

Name ¢ output

Default .

Description: The path for the output file.

Tunable : no

Input ports:

Name : input
Type : integer
Flags : _required

Description: Where numbers are read from.

Output ports:

As you can see, the process is very similar to the C++ print_number process. As a result, the [”.pipe” file is very
similar](sprokit/pipelines/number_flow_python.pipe).

In order to get around limitations imposed by the Python Global Interpreter Lock, we’ll use a different Sprokit sched-
uler for this pipeline. The pythread_per_process scheduler which does essentially what it says: it creates a
Python thread for every process in the pipeline:

pipeline_runner -S pythread_per_process -p </path/to/kwiver/source>/sprokit/pipelines/
—number_flow_python.pipe>

As with the previous pipeline, the numbers will be written to an output file, this time numbers_from python.txt

Process

detected_object_output

This sprokit process is used to ...

80 Chapter 2. Architecture

KWIVER Documentation, Release 1

draw_detected_object_boxes

Pipefile Usage

The following sections describe the blocks needed to use this process in a pipe file

Pipefile block

process draw # This name can be whatever you want
draw_detected_object_boxes
:default_line_thickness 3

Pipefile connections

The following Input ports will need to be set

ProcessX will provide a detected _object_set
connect from processX.detected_object_set
to draw.detected_object_set
ProcessY will provide an image
connect from processY.image
to draw.image

The follwing Output ports are available from this process

This process will provide an image with boxes to any processes
connect from draw.image
to processZ.image

Class Description

class kwiver: :draw_detected_object_boxes_process
Process to draw detected object boxes on an image.

Draws boxes around detected objects.

{detected_object_set} List of detections to draw.

{image} Input image where boxes are drawn.

{image} Updated image with boxes and other annotations.

{threshold} Detections with concidence values below this value are not drawn. (float)

{alpha_blend_prob} If this item is set to true, then detections with a lower probability are drawn with more
transparency.

{default_color} The default color specification for drawing boxes if no other more specific color spec is pro-
vided.

2.3. Sprokit Architecture 81

KWIVER Documentation, Release 1

{custom_class_color}

Inherits from sprokit::process

class priv

Public Functions

void draw_box (cv::Mat &image, const vital::detected_object_sptr dos, std::string label, double

prob, bool just_text = false, int offset_index = 0) const

Draw a box on an image.

This method draws a box on an image for the bounding box from a detected object.

When drawing a box with multiple class names, draw the first class_name with the just_text
parameter false and all subsequent calls with it set to true. Also the of fset parameter must be
incremented so the labels do not overwrite.

Parameters

* image: Input image updated with drawn box

* dos: detected object with bounding box

¢ label: Text label to use for box

* prob: Probability value to add to label text

* just_text: Set to true if only draw text, not the bounding box. This is used when there are
multiple labels for the same detection.

* offset: How much to offset text fill box from text baseline. This is used to offset labels when
there are more than one label for a detection.

vital::image_container_sptr draw_detections (vital::image_container_sptr image_data, vi-

tal::detected_object_set_sptr in_set) const

Draw detected object on image.

This method draws the detections on a copy of the supplied image. The detections are drawn in
confidence order up to the threshold. For each detection, the most likely class_name is optionally
displayed below the box.

Return Updated image.
Parameters

e image_data: The image to draw on.
e input_set: List of detections to draw.

bool name_selected (std::string const &name) const
See if name has been selected for display.

Return true if name should be rendered
Parameters

frame_list_input

e name: Name to check.

You can find the available option for the image_reader here

Reads a list of image file names and generates stream of images and associated
time stamps

82

Chapter 2. Architecture

KWIVER Documentation, Release 1

Configuration

Vari- Default | Tun-| Description
able able
frame_tim®.03333333NO | Inter frame time in seconds. The generated timestamps will have the
specified
number of seconds in the generated timestamps for sequential frames.
This can be
used to simulate a frame rate in a video stream application.
im- (no NO | Name of file that contains list of image file names. Each line in the file
specifies
age_list_[filkefault the name of a single image file.
value)
im- (no NO | Algorithm configuration subblock
age_readedefault
value)
path (no NO | Path to search for image file. The format is the same as the standard
default path
specification, a set of directories separated by a colon (*:”)
value)
Input Ports

There are no input ports for this process.

Output Ports

Port name Data Type Flags | Description

image kwiver:image (none)| Single frame image.

im- kwiver:image_file_namé¢none)| Name of an image file. The file name may contain leading path
age_file_name components.

timestamp kwiver:timestamp (none)| Timestamp for input image.

Pipefile Usage

The following sections describe the blocks needed ot use this process in a pipe file.

Pipefile block

process <this-name>
frame_list_input

Inter frame
number of se
be used to s
frame_time =
Name of file
specifies th
image_list_f
Algorithm co

H

image_reader
Path to sear
specificatio

time in seconds. The generated timestamps will have the specified
conds in the generated timestamps for sequential frames. This can
imulate a frame rate in a video stream application.

0.03333333

that contains 1list of image file names. Each line in the file
e name of a single image file.
ile = <value>
nfiguration subblock

= <value>

ch for image file. The format is the same as the standard path
n, a set of directories separated by a colon (':'")

2.3. Sprokit Architecture 83

KWIVER Documentation, Release 1

Process connections

The following Input ports will need to be set

There are no input port's for this process

The following Output ports will need to be set

connect from <this-proc>.image

to <downstream-proc>.image
connect from <this-proc>.image_file_name

to <downstream-proc>.image_file_name
connect from <this-proc>.timestamp

to <downstream-proc>.timestamp

Class Description

class kwiver: :frame_list_process
Reads a series of images.

{image}
{frame} {time}

Inherits from sprokit::process

image_object_detector

This sprokit process is used to ...

image_viewer

Display input image and delay

class kwiver: :image_viewer_ process
Display images.

Inherits from sprokit::process

Configuration

annotate_image = false Not tunable Add frame number and other text to display.
footer = (no default value) Not runable Footer text for image display. Displayed centered at bottom of image.

header = (no default value) Not tunable Header text for image display.

84 Chapter 2. Architecture

KWIVER Documentation, Release 1

pause_time = 0 Not tunable Interval to pause between frames. 0 means wait for keystroke, Otherwise interval is in
seconds (float)

title = Display window Not tunable Display window title text..

Input Ports

image Single frame image.
Data type : kwiver:image Flags : _required
timestamp Timestamp for input image.

Data type : kwiver:timestamp Flags : (none)

Output Ports
Pipefile Usage

The following sections describe the blocks needed to use this process in a pipe file

Pipefile block

process disp
image_viewer

rannotate_image true

:pause_time 2.0

:footer footer_footer

theader header—-header
R

Pipefile connections

The following Input ports will need to be set

connect from processX.timestamp
to disp.timestamp
connect from processX.image
to disp.image

The follwing Output ports are available from this process

There are no output port's for this process

2.3. Sprokit Architecture 85

KWIVER Documentation, Release 1

Class Description

class kwiver: :image_viewer_process
Display images.

Inherits from sprokit::process

image_writer

This sprokit process is used to ...

How To Make a Process
Plugins

Pipeline design
Overview

The design of the new pipeline is meant to address issues that have come up before and to add functionality that has
been wanted for a while including Python support, interactive pipeline debugging, better concurrency support, and
more.

Type Safety

The codebase strives for type safety where possible. This is achieved by using typedef to rename types. When
applicable, t ypedef types also expose objects through only a shared_ptr to prevent unintentional deep copies
from occurring and simplify memory management.

The use of typedef within the codebase also simplifies changing core types if necessary (e.g., replacing
std: :shared_ptr with a different managed pointer class).

Some of the core classes (i.e., sprokit: :datumand sprokit: :stamp) are immutable through their respective
typedef and can only be created with static methods of the respective class which enforce that they can only be
constructed in specific ways.

doxygenclass:: sprokit::datum
project kwiver

members

Introspection

Processes are designed to be introspected so that information about a process can be given at runtime. It also allows
processes to be created at runtime and pipelines created dynamically. By abstracting out C++ types, language bindings
do not need to deal with templates, custom bindings for every plugin, and other intricacies that bindings to C++
libraries usually entail.

86 Chapter 2. Architecture

KWIVER Documentation, Release 1

Thread safety

Processes within the new pipeline are encouraged to be thread safe. When thread safety cannot be ensured, it must be
explicitly marked. This is so that any situation where data is shared across threads where more than one thread expects
to be able to modify the data is detected as an error.

Error Handling

Errors within the pipeline are indicated with exceptions. Exceptions allow the error to be handled at the appropriate
level and if the error is not caught, the message will reach the user. This forces ignoring errors to be explicit since not
all compilers allow decorating functions to warn when their return value is ignored.

Control Flow

The design of the ref sprokit::process class is such that the heavy lifting is done by the base class and specialized
computations are handled as needed by a subclass. This allows a new process to be written with a minimum amount of
boilerplate. Where special logic is required, a subclass can implement a ¢ virtual method which can add supplemental
logic to support a feature.

For example, when information about a port is requested, the ref sprokit::process::input_port_info method is called
which delegates logic to the ref sprokit::process::_input_port_info method which can be overwritten. By default, it
returns information about the port if it has been declared, otherwise it throws an exception that the port does not exist.
To create ports on the fly, a process can reimplement ref sprokit::process::_input_port_info to create the port so that it
exists and an exception is not thrown.

The rationale for not making ref sprokit::process::input_port_info c¢ virtual is to enforce that API specifications are
met. For example, when connecting edges, the main method makes sure that the edge is not ¢ NULL and that the
process has not been initialized yet.

Data Flow

Data flows within the pipeline via the ref sprokit::edge class which ensures thread-safe communication between pro-
cesses. A process communicates with edges via its input and output ports. Ports are named communication sockets
where edges may be connected to so that a process can send and receive data. Input ports may have at most one edge
sending data to it while output ports may feed into any number of edges.

Ports

Ports are declared within a process and managed by the base ref sprokit::process class to minimize the amount of code
that needs to be written to handle communication within the pipeline.

A port has a “type” associated with it which is used to detect errors when connecting incompatible ports with each
other. These types are em logical types, not a type within a programming language. A c double can represent a distance
or a time interval (or even a distance is a different unit!), but a port which uses a ¢ double to a distance would have
a type of c distance_in_meters, em not ¢ double. There are two special types, one of which indicates that any type is
accepted on the port and another which indicates that no data is ever expected on the port.

Ports can also have flags associated with them. Flags give extra information about the data that is expected on a port.
A flag can indicate that the data on the port must be present to make any sense (either it’s required for a computation
or that if the result is ignored, there’s no point in doing the computation in the first place), the data on the port should
not be modified (because it is only a shallow copy and other processes modifying the data would invalidate results),
or that the data for the port will be modified (used to cause errors when connected to a port with the previous flag).

2.3. Sprokit Architecture 87

KWIVER Documentation, Release 1

Flags are meant to be used to bring attention to the fact that more is happening to data that flows through the port than
normal.

Packets

Each data packet within an edge is made up of two parts: a status packet and a stamp. The stamp is used to ensure that
the various flows through the pipeline are synchronized.

The status packet indicates the result of the computation that creates the result available on a port. It can indicate that
the computation succeeded (with the result), failed (with the error message), could not be completed for some reason
(e.g., not enough data), or complete (the input data is exhausted and no more results can be made). Having a status
message for each result within the pipeline allows for more fine-grained data dependencies to be made. A process
which fails to get some extra data related to its main data stream (e.g., metadata on a video frame) does not have to
create invalid objects nor indicate failure to other, unrelated, ports.

A stamp consists of a step count and an increment. If two stamps have the same step count. A stamp’s step count is
incremented at the source for each new data element. Step counts are unitless and should only be used for ordering
information. In fact, the ref sprokit::stamp interface enforces this and only provides a comparison operator between
stamps. Since step counts are unitless and discrete, inserting elements into the stream requires that the step counts
change.

The base ref sprokit::process class handles the common case for incoming and outgoing data. The default behavior is
that if an input port is marked as being “required”, its status message is aggregated with other required inputs:

* If arequired input is complete, then the current process’ computation is considered to be complete as well.

» Otherwise, if a required input is an error message, then the current process’ computation is considered an error
due to an error as input (following the GIGO principle).

* Otherwise, if a required input is empty, then the current process’ computation is considered empty (the compu-
tation is missing data and cannot be completed).

* Then, since all of the required inputs are available, the stamps are checked to ensure that they are on the same
step count.

If custom logic is required to manage ports or data, this control flow can be disabled piecemeal and handled manually.
The status can check can be disabled on a per-process basis so that it can be managed in a special way.

Pipeline Execution

The execution of a pipeline is separate from the construction and verification. This allows specialized schedulers to be
used in situations where some resource is constrained (one scheduler to keep memory usage low, another to minimize
CPU contention, another for an I/O-heavy pipeline, and others).

Pipeline Declaration Files

Pipeline declaration files allow a pipeline to be loaded from a plain text description. They provide all of the information
necessary to create and run a pipeline and may be composed of files containing pipeline specification information that
are included into the main file

The ‘# character is used to introduce a comment. All text from the ‘#’ to the end of the line are considered comments.
A pipeline declaration file is made up of the following sections:
» Configuration Section

¢ Process Definition Section

88 Chapter 2. Architecture

KWIVER Documentation, Release 1

¢ Connection Definition

Configuration Entries

Configuration entries are statements which add an entry to the configuration block for the pipeline. The general form
for a configuration entry is a key / value pair, as shown below:

key = value

The key specification can be hierarchical and be specified with multiple components separated by a ‘:* character. Key
components are described by the following regular expression [a-zA-Z0-9_—]+.

key:component:1list = value

Each leading key component (the name before the °:”) establishes a subblock in the configuration. These subblocks
are used to group configuration entries for different sections of the application.

The value for a configuration entry is the character string that follows the ‘=" character. The value has leading and
trailing blanks removed. Embedded blanks are preserved without the addition of enclosing quotes. If quotes are used
in the value portion of the configuration entry, they are not processed in any way and remain part of the value string.
That is, if you put quotes in the value component of a configuration entry, they will be there when the value is retrieved
in the program.

Configuration items can have their values replaced or modified by subsequent configuration statements, unless the
read-only flag is specified (see below).

The value component may also contain macro references that are replaced with other text as the config entry is pro-
cessed. Macros can be used to dynamically adapt a config entry to its operating environment without requiring the
entry to be hand edited. The macro substitution feature is described below.

Configuration entry attributes

Configuration keys may have attributes associated with them. These attributes are specified immediately after the
configuration key. All attributes are enclosed in a single set of brackets (e.g. []). If a configuration key has more than
one attribute they are all in the same set of brackets separated by a comma.

Currently the only understood flags are:

flag{ro} Marks the configuration value as read-only. A configuration that is marked as read only may not have the
value subsequently modified in the pipeline file or programatically by the program.

flag{tunable} Marks the configuration value as tunable. A configuration entry that is marked as tunable can have
a new value presented to the process during a reconfigure operation.

Examples:
foo[ro] = bar # results in foo = "bar"
foo[ro, tunable] = bar

Macro Substitution

The values for configuration elements can be composed from static text in the config file and dynamic text supplied by
macro providers. The format of a macro specification is $TYPE {name } where TYPE is the name of macro provider
and name requests a particular value to be supplied. The name entry is specific to each provider.

The text of the macro specification is only replaced. Any leading or trailing blanks will remain. If the value of a macro
is not defined, the macro specification will be replaced with the null string.

2.3. Sprokit Architecture 89

KWIVER Documentation, Release 1

Macro Providers

The macro providers are listed below and discussed in the following sections.
* LOCAL - locally defined values
* ENV - program environment
* CONFIG - values from current config block

¢ SYSENYV - system environment

LOCAL Macro Provider

This macro provider supplies values that have been stored previously in the config file. Local values are specified in
the config file using the ”:=" operator. For example the config entry mode := online makes $LOCAL{mode}
available in subsequent configuration entries.:

mode := online

config_file = data/$LOCAL{mode}/model.dat

This type of macro definition can appear anywhere in a config file and becomes available for use on the next line. The
current block context has no effect on the name of the macro.

ENV Macro Provider

This macro provides gives access to the current program environment. The values of environment variables such as
“HOME” can be used by specifying SENV {HOME } in the config file.

CONFIG Macro Provider

This macro provider gives access to previously defined configuration entries. For example:

config foo
bar = baz

makes the value available by specifying SCONFIG{foo:bar} to following lines in the config file as shown below.:

value = mode-$CONFIG{foo:bar}ify

SYSENV Macro Provider

This macro provider supports the following symbols derived from the current host operating system environment.
e curdir - current working directory
* homedir - current user’s home directory
* pid - current process id
* numproc - number of processors in the current system

¢ totalvirtualmemory - number of KB of total virtual memory

920 Chapter 2. Architecture

KWIVER Documentation, Release 1

* availablevirtualmemory - number of KB of available virtual memory
* totalphysicalmemory - number of KB of total physical memory

* availablephysicalmemory - number of KB of physical virtual memory
* hostname - name of the host computer

* domainname - name of the computer in the domain

* osname - name of the host operating system

* osdescription - description of the host operating system

* osplatform - platorm name (e.g. x86-64)

* osversion - version number for the host operating system

* iswindows - TRUE if running on Windows system

¢ islinux - TRUE if running on Linux system

* isapple - TRUE if running on Apple system

* is64bits - TRUE if running on a 64 bit machine

Block Specification
In some cases the fully qualified configuration key can become long and unwieldy. The block directive can be used to

establish a configuration context to be applied to the enclosed configuration entries. block alg Starts a block with
the alg block name and all entries within the block will have alg: prepended to the entry name.:

block alg
mode = red # becomes alg:mode = red
endblock

Blocks can be nested to an arbitrary depth with each providing context for the enclosed entries.:

block foo
block bar:fizzle
mode = yellow # becomes foo:bar:fizzle:mode = yellow
endblock
endblock

Including Files

The include directive logically inserts the contents of the specified file into the current file at the point of the include
directive. Include files provide an easy way to break up large configurations into smaller reusable pieces.

include filename

If the file name is not an absolute path, it is located by scanning the current config search path. The manner in which
the config include path is created is described in a following section. If the file is still not found, the stack of include
directories is scanned from the current include file back to the initial config file. Macro substitution, as described
below, is performed on the file name string before the searching is done.

Block specifications and include directives can be used together to build reusable and shareable configuration snippets.:

2.3. Sprokit Architecture 91

KWIVER Documentation, Release 1

block main
block alg_one
include alg_foo.config
endblock

block alg_two
include alg_foo.config
endblock
endblock

In this case the same configuration structure can be used in two places in the overall configuration.

Include files can be nested to an arbitrary depth.

Relativepath Modifier

There are cases where an algorithm needs an external file containing binary data that is tied to a specific configuration.
These data files are usually stored with the main configuration files. Specifying a full hard coded file path is not
portable between different users and systems.

The solution is to specify the location of these external files relative to the configuration file and use the relativepath
modifier construct a full, absolute path at run time by prepending the configuration file directory path to the value. The
relativepath keyword appears before the key component of a configuration entry.:

relativepath data_file = ../data/online_dat.dat

If the current configuration file is /home/vital/project/config/blue/foo.config, the resulting config
entry for data_file will be /home/vital/project/config/blue/../data/online.dat

The relativepath modifier can be applied to any configuration entry, but it only makes sense to use it with relative file
specifications.

Configuration Section

Configuration sections introduce a named configuration subblock that can provide configuration entries to runtime
components or make the entries available through the SCONFIG{key} macro.

The configuration blocks for _pipeline and _scheduler are described below.

The form of a configuration section is as follows:

config <key-path> <line-end>
<config entries>

Examples

todo Explain examples.:

config common
uncommon = value
also:uncommon = value

Creates configuration items:

92 Chapter 2. Architecture

KWIVER Documentation, Release 1

common : uncommon = value
common:also:uncommon = value

Another example:

config a:common:path
uncommon:path:to:key = value
other:uncommon:path:to:key = value

Creates configuration items:

a:common:path:uncommon:path:to:key = value
a:common:path:other:uncommon:path:to:key = value

Process definition Section
A process block adds a process to the pipeline with optional configuration items. Processes are added as an instance

of registered process type with the specified name. Optional configuration entries can follow the process declaration.
These configuration entries are made available to that process when it is started.

Specification

A process specification is as follows. An instance of the specified process-type is created and is available in the
pipeline under the specified process-name:

process <process—name> :: <process-type>
<config entries>

Examples

An instance of my_processes_type is created and named my_process:

process my_process :: my_process_type

process another_process
awesome_process
some_param = some_value

Non-blocking processes

A process can be declared as non-blocking which indicates that input data is to be dropped if the input port queues are
full. This is useful for real-time processing where a process is the bottleneck.

The non-blocking behaviour is a process attribute that is specified as a configuration entryin the pipeline file. The
syntax for this configuration option is as follows:

process blocking_process
awesome_process
_non_blocking = 2

2.3. Sprokit Architecture 93

KWIVER Documentation, Release 1

The special “_non_blocking” configuration entry specifies the capacity of all incoming edges to the process. When the
edges are full, the input data are dropped. The input edge size is set to two entries in the above example. This capacity
specification overrides all other edge capacity controls for this process only.

Static port values

Declaring a port static allows a port to be supplied a constant value from the config in addition to the option of it
being connected in the normal way. Ports are declared static when they are created by a process by adding the c
flag_input_static option to the ¢ declare_input_port() method.

When a port is declared as static, the value at this port may be supplied via the configuration using the special static/
prefix before the port name. The syntax for specifying static values is:

:static/<port-name> <key-value>

If a port is connected and also has a static value configured, the configured static value is ignored.

The following is an example of configuring a static port value.:

process my_process
my_process_type
static/port = value

Instrumenting Processes

A process may request to have its instrumentation calls handled by an external provider. This is done by adding the
_instrumentation block to the process config.:

process my_process
my_process_type
block _instrumentation
type = foo
block foo
file = output.dat
buffering = optimal
endblock
endblock

The type parameter specifies the instrumentation provider, “foo” in this case. If the special name “none” is specified,
then no instrumentation provider is loaded. This is the same as not having the config block present. The remaining
configuration items that start with “_instrumentation:<type>" are considered configuration data for the provider and
are passed to the provider after it is loaded.

Connection Definition

A connection definition specifies how the output ports from a process are connected to the input ports of another
process. These connections define the data flow of the pipeline graph.:

connect from <process—name> . <input-port-name> to <process-name> . <output-port-name>

94 Chapter 2. Architecture

KWIVER Documentation, Release 1

Examples

This example connects a timestamp port to two different processes.:

connect from input.timestamp to stabilize .timestamp
connect from input.timestamp to writer .timestamp

Pipeline Edge Configuration

A pipeline edge is a connection between two ports. The behaviour of the edges can be configured if the defaults are
not appropriate. Note that defining a process as non-blocking overrides all input edge configurations for that process
only.

Pipeline edges are configured in a hierarchical manner. First there is the _pipeline:_edge config block which establishes
the basic configuration for all edges. This can be specified as follows:

config _pipeline:_edge
capacity = 30 # set default edge capacity

Currently the only attribute that can be configured is “capacity”.

The config for the edge type overrides the default configuration so that edges used to transport specific data types can
be configured as a group. This edge type configuration is specified as follows:

config _pipeline:_edge_by_type
image_container:capacity = 30
timestamp:capacity = 4

Where image_container and timestamp are the type names used when defining process ports.

After this set of configurations have been applied, edges can be more specifically configured based on their connection
description. An edge connection is described in the config as follows:

config _pipeline:_edge_by_conn
<process>:<up_down>:<port> <value>

Where:
* <process> is the name of the process that is being connected.
* <up_down> is the direction of the connection. This is either “up” or “down”.
* <port> is the name of the port.

For the example, the following connection:

connect from input.timestamp
to stabilize.timestamp

can be described as follows:

config _pipeline:_edge_by_conn
input:up:timestamp:capacity = 20
s tabilize:down:timestamp:capacity = 20

Both of these entries refer to the same edge, so in real life, you would only need one.

2.3. Sprokit Architecture 95

KWIVER Documentation, Release 1

These different methods of configuring pipeline edges are applied in a hierarchial manner to allow general defaults to
be set, and overridden using more specific edge attributes. This order is default capacity, edge by type, then edge by
connection.

Scheduler configuration

Normally the pipeline is run with a default scheduler that assigns one thread to each process. A different scheduler
can be specified in the config file. Configuration parameters for the scheduler can be specified in this section also.:

config _scheduler
type = <scheduler-type>

Available scheduler types are:
* sync - Runs the pipeline synchronously in one thread.
* thread_per_process - Runs the pipeline using one thread per process.
* pythread_per_process - Runs the pipeline using one thread per process and supports processes written in python.
* thread_pool - Runs pipeline with a limited number of threads (not implemented).
The pythread_per_process is the only scheduler that supports processes written python.

Scheduler specific configuration entries are in a sub-block named as the scheduler. Currently these schedulers do not
have any configuration parameters, but when they do, they would be configured as shown in the following example.

Example

The pipeline scheduler can selected with the pipeline configuration as follows:

config _scheduler
type = thread_per_process

Configuration for thread per_process scheduler
thread_per_process:foo = bar

Configuration for sync scheduler
sync:foos = bars

Clusters Definition File
A cluster is a collection of processes which can be treated as a single process for connection and configuration pur-
poses. Clusters are defined in a slngle file with one cluster per file.

A cluster definition starts with the cluster keyword followed by the name of the cluster. A documentation section must
follow the cluster name definition. Here is where you describe the purpose and function of the cluster in addition to
any other important information about limitations or assumptions. Comments start with —— and continue to the end of
the line.

The body of the cluster definition is made up of three types of declarations that may appear multiple times and in any
order. These are:

* config specifier
* input mapping

* output mapping

96 Chapter 2. Architecture

KWIVER Documentation, Release 1

A description is required after each one of these entries. The description starts with “~" and continues to the end of the
line. These descriptions are different from typical comments you would put in a pipe file in that they are associated
with the cluster elements and serve as user documentation for the cluster.

After the cluster has been defined, the constituent processes are defined. These processes are contained within the
cluster and can be interconnected in any valid configuration.

config specifier

A configuration specification defines a configuration key with a value that is bound to the cluster. These configuration
items are available for use within the cluster definition file and are referenced as <cluster-name>:<config-key>:

cluster_key = value
—— Describe configuration entry

Input mapping

The input mapping specification creates an input port on the cluster and defines how it is connected to a process (or
processes) within the cluster. When a cluster is instantiated in a pipeline, connections can be made to these ports.:

imap from cport

to procl.port

to proc2.port
—— Describe input port expected data type and
—— all other interesting details.

Output mapping

The output mappinc specification creates an output port on the cluster and defines how the data is supplied. When a
cluster is instantiated, these output ports can be connected to downstream processes in the usual manner.:

omap from proc2.oport to cport
—— Describe output port data type and
—— all other interesting details.

An example cluster definition is as follows:

cluster <name>
—— Description fo cluster.
—-— May extend to multiple lines.

cluster_key = value
—— Describe the config entry here.

imap from cport

to procl.port

to proc?2.port
—— Describe input port. Input port can be mapped
—-— to multiple process ports

omap from proc2.oport to coport
—— describe output port

2.3. Sprokit Architecture 97

KWIVER Documentation, Release 1

The following is a more complicated example:

cluster configuration_provide
—-— Multiply a number by a constant factor.

factor = 20
—— The constant factor to multiply by.

imap from factor to multiply.factorl
—— The factor to multiply by.

omap from multiply.product to product
—— The product.

The following defines the contained processes
process const
const_number
value[ro]= S$CONFIG{configuration_provide:factor}

process multiply
multiplication

connect from const.number to multiply.factor2

Pipeline Example

How To Make a Pipeline

Vital A set of data types and algorithm interfaces
Arrows | Various implementations of vital algorithms
Sprokit | An infrastructure for chaining together algorithms

98

Chapter 2. Architecture

CHAPTER 3

Tools

KWIVER provides the following tools

Process Explorer

Pipeline Runner

Process Explorer

Provides information about Sprokit Processes

#:doc:Pipeline Runner</tools/pipeline_runner>

Executes a pipe file

99

KWIVER Documentation, Release 1

100 Chapter 3. Tools

CHAPTER 4

Tutorials

The following links describe a set of kwiver tutorials. All the source code mentioned here is provided by the repository.
Visit the repository on how to get and build the KWIVER code base

As always, we would be happy to hear your comments and receive your contributions on any tutorial.

Fundamental Types and Algorithms

The following tutorials will demonstrate the basic functionality provided in kwiver. They will focus on the vital
types available in kwiver and the various algorithm interfaces currelty supported. Each example highlights an area of
functionality provied in KWIVER. The KWIVER examples directory contains executable code demonstrating the use
of these types with various arrow implementations of the highligted algorithms.

Images Learn about the fundamental image types and some basic I/O and algorithms
Detection | Focus on the data structures and algorithms used by object detection

Sprokit Pipelines

The following tutorials will use Sprokit pipeline files to chain together various algorithms to demonstrate applied
examples. The KWIVER examples directory contains executable pipe files for each of the table entries below. In
order to execute the provided pipeline file, follow the steps to set up KWIVER here

Numbers Flow A simple ‘Hello World’ pipeline that outputs numbers to a file
Image Display A pipe that loads and displays several images

Video Display A pipe that loads and displays a video file

Hough Detection Detect circles in images using a hough detector

Darknet Detection | Object detection using the Darnket library

Image Stabilization | Something cool that Matt Brown has done

101

https://github.com/Kitware/kwiver/examples
https://github.com/Kitware/kwiver
https://github.com/kwiver#running-kwiver

KWIVER Documentation, Release 1

Hello World

The examples/pipelines/number_flow.pipe and exaples/pipelines/number_flow_python are associated with this tuto-
rial.

Simple Image

The examples/pipelines/image_display.pipe is associated with this tutorial.

input
:: frame list input

_heartbeat timestamp image_file_name image
i1 _none :: kwiver:timestamp - kwiver:image_file_name :: kwiver:image
timestamp image
:: kwiver:timestamp :: kwiver:image

disp
:: image viewer

_heartbeat
1 _none

#
process input
frame_list_input
Input file containing new-line separated paths to sequential image
files.
image_list_file = @EXAMPLE_DIR@/pipelines/image_list.txt

frame_time = .9
Algorithm to use for 'image_reader'.
Must be one of the following options:
- ocv
- vxl

102 Chapter 4. Tutorials

KWIVER Documentation, Release 1

image_reader:type = ocv

#

process disp

image_viewer

rannotate_image true
:pause_time 2.0

:footer footer_footer
theader header-header
J— J— _—
global pipeline config

#

config _pipeline:_edge
capacity = 10

J— _— J— ———— e
connections
connect from input.timestamp
to disp.timestamp
connect from input.image
to disp.image

—— end of file —-

Simple Video

The examples/pipelines/video_display.pipe is associated with this tutorial.

Hough Detection

The examples/pipelines/hough_detector.pipe is associated with this tutorial.

Darknet Detection

Setup

In order to execute pipeline files, follow these steps to set up KWIVER

In order to run the pipelines associated with this tutorial you will need to download the associated data package. The
download process is done via targets created in the build process. In a bash terminal in your KWIVER build directory,
make the following targets:

make external_darknet_example
make setup_darknet_example

If you are using Visual Studio, manually build the external_darknet_example project, followed by the
setup_darknet_example project.

This will pull, place, and configure all the data associated with thise exampe into <your KWIVER build direc-
tory>/examples/pipeline/darknet folder

The following files will be in the <build directory>/examples/pipelines/darknet folder:

4.2. Sprokit Pipelines 103

https://github.com/kwiver#running-kwiver

KWIVER Documentation, Release 1

* images - Directory containing images used in this example

* models - Directory containing configuration and weight files needed by Darknet
* output - Directory where new images will be placed when the pipeline executes

¢ video - Directory containing the video used in this example

* configure.cmake - CMake script to set configure *.in files specific to your system
 darknet_image.pipe - The pipe file to run Darknet on the provided example images
* darknet_image.pipe.in - The pipe file to be configured to run on your system

* darknet_video.pipe - The pipe file to run Darknet on the provided example video
* darknet_video.pipe.in - The pipe file to be configured to run on your system

* image_list.txt - The images to be used by the darknet_image.pipe file
 image_list.txt.in - The list file to be configured to run on your system

 readme.txt - This tutorial supersedes content in this file

Execution

Run the following command from the kwiver buildbin directory (binrelease on windows) Relativly point to the dark-

net_image.pipe or darknet_video.pipe file like this:

Windows Example :

pipeline_runner -p ..\..\examples\pipelines\darknet\darknet_image.pipe

Linux Example :
./pipeline_runner -p ../examples/pipelines/darknet/darknet_image.pipe

The darknet_image.pipe file will put all generated output to the examples/pipelines/darknet/output/images

The darknet_video.pipe file will put all generated output to the examples/pipelines/darknet/output/video

We will dig into more details for each pipeline file in the following sections.

Image Detection

The darknet_image.pipe file will run a pre-trained YOLO v2 object detector from darknet against the provided image

files. The detector is trained to identify people and vehicles in images.
Follow these links for more information about pipeline design and files.

This pipefile will execute the following processes for each image specified:

104

Chapter 4. Tutorials

KWIVER Documentation, Release 1

Processes

Name input
Type frame_list_input
Description Reads the images in the image_list.txt file

Name yolo_v2
Type image_object_detector
Description Configured to use the darknet implementation of image_object_detector

Name draw

Type draw_detected_object_boxes

Description Creates a copy of the current image, then draw the detection boxes on it created by the
yolo_v2 process

Name disp
Type image_viewer
Description Shows the new image copy with detection boxes in a window as the pipeline runs

Name write
Type image_writer
Description Writes the new image copy with detection boxes to the specified directory

Name yolo_v2_kwI18_writer
Type detected_object_output
Description Writes the detected_object_set object to an ascii file in kw18 format

Name yolo_v2_csv_writer
Type detected_object_output
Description Writes the detected_object_set object to an ascii file in csv format

Video Detection

TODO

Image Stabilization

The examples/pipelines/image_display.pipe is associated with this tutorial.

4.2. Sprokit Pipelines

105

KWIVER Documentation, Release 1

106 Chapter 4. Tutorials

CHAPTER B

Extending Kwiver

This section discusses the various ways KWIVER can be extended with vital types, algorithms (Arrows) and processes.

Creating a new Algorithm

Adding Algorithm Implementations

How to configure an Algorithm

How to Instantiate an Algorithm

How to Wrap an Algorithm with a Process

107

KWIVER Documentation, Release 1

108 Chapter 5. Extending Kwiver

CHAPTER O

Indices and tables

* genindex
* modindex

e search

109

KWIVER Documentation, Release 1

110 Chapter 6. Indices and tables

Index

image_io::load (C++ function), 12, 56
image_io::save (C++ function), 12, 56

K

kwiver::
kwiver::

kwiver::

kwiver::

kwiver:

kwiver::

kwiver::

kwiver::

kwiver::

kwiver:

kwiver::

kwiver::

kwiver::

kwiver::

kwiver:

kwiver::

kwiver::

kwiver::

:arrows::ceres::bundle_adjust:

:arrows::ceres::bundle_adjust:

arrows::ceres::bundle_adjust (C++ class), 69

arrows::ceres::bundle_adjust::
(C++ function), 69

arrows::ceres::bundle_adjust::
(C++ function), 69

arrows::ceres::bundle_adjust::
(C++ function), 69

:arrows::ceres::bundle_adjust::

(C++ function), 69
arrows::ceres::bundle_adjust::
function), 69
arrows::ceres::bundle_adjust:
70
arrows::ceres::bundle_adjust:
(C++ member), 70
arrows::ceres::bundle_adjust:
(C++ member), 70

member), 70
arrows::ceres::bundle_adjust:
(C++ member), 70
arrows::ceres::bundle_adjust:
(C++ member), 70
arrows::ceres::bundle_adjust:
(C++ member), 70
arrows::ceres::bundle_adjust:
member), 70

(C++ member), 70
arrows::ceres::bundle_adjust:

(C++ member), 70
arrows::ceres::bundle_adjust:

(C++ member), 70
arrows::ceres::bundle_adjust:

:priv:
:priv:
priv::
:priv:
priv:
:priv:
:priv:

‘priv:

~bundle_adjust
bundle_adjust
check_configuration
get_configuration

optimize (C++

;priv (C++ class),

cams (C++

:ceres_callback

:Ims (C++

:camera_intr_parﬁms
wiver:

.camera_params

:loss_function_sclglle,
Wwiver:

kwiver:
kwiver:
kwiver:
kwiver:
kwiver:
kwiver:
kwiver:
kwiver:

kwiver:

kwiver:
kwiver:

kwiver:

:frame_to_intr_ni(a‘Biver.

:landmark_paranl(sw

kwiver:

:priv::loss_function_type .
p - _ylgwwer:
:priv::m_logger .
P —logg kwiver:
priv::priv C++ .
p P (kwiver:

:arrows::ceres::camera_limit_forward_motion:

iver::arrows::ceres::distortion_poly_radial

function), 70
member), 70
function), 70

(C++ function), 69

:arrows::ceres::bundle_adjust::trigger_callback

(C++ function), 70

:arrows::ceres::camera_limit_forward_motion

(C++class), 73

:arrows::ceres::camera_limit_forward_motion::

(C++ function), 73

(C++ function), 73

:arrows::ceres::camera_limit_forward_motion::

(C++ function), 73

:arrows::ceres::camera_limit_forward_motion::

(C++ member), 73

:arrows::ceres::camera_position_smoothness

(C++ class), 72
(C++ function), 72
(C++ function), 73
(C++ function), 72
75

class), 73

:arrows::ceres::distortion_poly_radial::apply

(C++ function), 74
(C++ class), 74
(C++ function), 74

(C++ class), 74

:arrows::ceres::bundle_adjust::priv::verbose (C++
:arrows::ceres::bundle_adjust::set_callback (C++

:arrows::ceres::bundle_adjust::set_configuration

camera_limit_forwa

.create

operator()

scale_

:arrows::ceres::camera_position_smoothness::camera_position_smo
:arrows::ceres::camera_position_smoothness::create
:arrows::ceres::camera_position_smoothness::operator()
:arrows::ceres::create_cost_func (C++ function),

(C++

:arrows::ceres::distortion_poly_radial_tangential
:arrows::ceres::distortion_poly_radial_tangential::apply
:arrows::ceres::distortion_ratpoly_radial_tangential

:arrows::ceres::distortion_ratpoly_radial_tangential::apply

111

KWIVER Documentation, Release 1

kwiver::
kwiver::

kwiver::

kwiver::

kwiver::

kwiver:

kwiver::

kwiver::

kwiver::

kwiver::

kwiver:

kwiver::

kwiver::

kwiver::

kwiver::
kwiver::

kwiver::
kwiver::
kwiver:
kwiver::
kwiver::
kwiver:
kwiver::
kwiver::

kwiver::

kwiver::
kwiver::

kwiver::

kwiver::

kwiver:

(C++ function), 74

arrows::ceres::optimize_cameras (C++ class), 71
arrows::ceres::optimize_cameras:

(C++ function), 71

arrows::ceres: :optimize_cameras:

(C++ function), 71

arrows::ceres::optimize_cameras:

(C++ function), 71

arrows::ceres: :optimize_cameras:

function), 71

-aIrTOWS::CEres: :optimize_cameras:

(C++ function), 71

arrows::ceres::optimize_cameras:

class), 72

arrows::ceres: :optimize_cameras:

(C++ member), 72

arrows::ceres: :optimize_cameras:

(C++ member), 72

arrows::ceres: :optimize_cameras:

(C++ member), 72

-aIrOws::Ceres: :optimize_cameras:

(C++ function), 72

arrows::ceres::optimize_cameras:

(C++ member), 72

arrows::ceres: :optimize_cameras:

(C++ function), 71

arrows::darknet::darknet_detector (C++ class),

75

arrows::darknet::darknet_trainer (C++ class), 75
draw_detected_object_boxes_process

class), 81

:priv

:check_configuratiowiver:
kwiver:
:get_configuration
kwiver:
:optimize (C++
kwiver:
:optimize_cameras
kwiver:

(C++
kwiver

:priv::loss_function_scale
::vital::algo::compute_stereo_depth_map::static_type_name

kwiver

:priv::loss_function_type

kwiver:
:priv::m_logger

kwiver:
:priv::priv

kwiver:
:priv::verbose

kwiver:
:set_configurationkwiver:

(C++

kwiver:

draw_detected_object_boxes_process::priv (C++

class), 82

kwiver:

draw_detected_object_boxes_process::priv::draw_bkwiver

(C++ function), 82

:draw_detected_object_boxes_process

(C++ function), 82

draw_detected_object_boxes_process

(C++ function), 82

kwiver

frame_list_process (C++ class), 84

:image_viewer_process (C++ class), 84, 86

vital::algo::analyze_tracks (C++ class), 36

vital::algo::analyze_tracks::print_info

function), 36

vital::algo::analyze_tracks::static_type_name

(C++ function), 37

vital::algo::bundle_adjust (C++ class), 37

(C++

vital::algo::bundle_adjust::callback_t (C++ type),

37

kwiver:

vital::algo::bundle_adjust::optimize (C++ func-

tion), 37

vital::algo::bundle_adjust::set_callback

function), 37

kwiver:

(C++

kwiver:
:vital::algo::bundle_adjust::static_type_name

kwiver:
:~optimize_camerkswiver:

kwiver:

kwiver:

kwiver:
kwiver:
kwiver:

kwiver:

(C++ function), 37

:vital::algo::close_loops (C++ class), 37

:vital::algo::close_loops::static_type_name (C++
function), 38

:vital::algo::close_loops::stitch (C++ function), 38

:vital::algo::compute_ref_homography (C++
class), 38

:vital::algo::compute_ref _homography::estimate
(C++ function), 38

(C++ function), 39
:vital::algo::compute_stereo_depth_map

class), 39
::vital::algo::compute_stereo_depth_map::compute
(C++ function), 39

(C++

(C++ function), 39
:vital::algo::compute_track_descriptors
class), 39
:vital::algo::compute_track_descriptors::compute
(C++ function), 40

(C++

(C++ function), 40
:vital::algo::convert_image (C++ class), 40
:vital::algo::convert_image::check_configuration
(C++ function), 40
:vital::algo::convert_image::convert (C++ func-
tion), 40
:vital::algo::convert_image::set_configuration
(C++ function), 40
:vital::algo::convert_image::static_type_name
(C++ function), 40
:vital::algo::detect_features (C++ class), 40
::vital::algo::detect_features::detect (C++ func-
tion), 41

:priv::draw_dkteoternyital::algo::detect_features::static_type_name

(C++ function), 41

::priv::name_sketentert:vital::algo::detected_object_filter (C++ class), 41

::vital::algo::detected_object_filter::filter (C++

function), 41

(C++ function), 42
:vital::algo::detected_object_set_input
class), 42
:vital::algo::detected_object_set_input::at_eof
(C++ function), 43
:vital::algo::detected_object_set_input::close
(C++ function), 42
:vital::algo::detected_object_set_input::open
(C++ function), 42
:vital::algo::detected_object_set_input::read_set
(C++ function), 42

(C++

(C++ function), 43

112

Index

:vital::algo::compute_ref_homography::static_type_name

:vital::algo::compute_track_descriptors::static_type_name

:vital::algo::detected_object_filter::static_type_name

:vital::algo::detected_object_set_input::static_type_name

KWIVER Documentation, Release 1

kwiver:

kwiver::

kwiver::

kwiver::

kwiver::

kwiver:

kwiver::

kwiver::

kwiver::

kwiver::

kwiver:

kwiver::

kwiver::

kwiver::

kwiver::

kwiver::

kwiver:

kwiver::

kwiver::

kwiver::

kwiver::

kwiver:

kwiver::

kwiver::

kwiver::

kwiver:

kwiver::

kwiver::

:vital::algo::draw_tracks (C++ class), 45
vital::algo::draw_tracks::draw (C++ function), 45 kwiver:

:vital::algo::detected_object_set_input::use_stream kwiver:

(C++ function), 42
vital::algo::detected_object_set_output
class), 43
vital::algo::detected_object_set_output::close
(C++ function), 44
vital::algo::detected_object_set_output::open
(C++ function), 43

vital::algo::detected_object_set_output::static_type_knmimer:
kwiver:

(C++ function), 44

:vital::algo::detected_object_set_output::use_stream

(C++ function), 43
vital::algo::detected_object_set_output::write_set
(C++ function), 44
vital::algo::draw_detected_object_set
class), 44
vital::algo::draw_detected_object_set::draw
(C++ function), 44

vital::algo::draw_detected_object_set::static_type_rlawizer:

(C++ function), 45

vital::algo::draw_tracks::static_type_name (C++
function), 45

vital::algo::dynamic_configuration
45

(C++ class),

(C++ function), 46

(C++ kwiver:
kwiver:

kwiver:

kwiver:

kwiver:
(C++ kwiver:

kwiver:

kwiver:

kwiver:

kwiver:
vital::algo::dynamic_configuration::check_configurktwiner:
kwiver:

:vital::algo::estimate_homography::static_type_name

(C++ function), 50

:vital::algo::estimate_similarity_transform (C++

class), 50

:vital::algo::estimate_similarity_transform::estimate_transform

(C++ function), 51, 52

:vital::algo::estimate_similarity_transform::static_type_name

(C++ function), 52

:vital::algo::extract_descriptors (C++ class), 52
:vital::algo::extract_descriptors::extract

(C++
function), 53

:vital::algo::extract_descriptors::static_type_name

(C++ function), 53

:vital::algo::feature_descriptor_io (C++ class), 53

:vital::algo::feature_descriptor_io::load (C++
function), 53

:vital::algo::feature_descriptor_io::save (C++

function), 53

:vital::algo::feature_descriptor_io::static_type_name

(C++ function), 54

:vital::algo::filter_features (C++ class), 54
:vital::algo::filter_features::filter (C++ function),

54

:vital::algo::filter_features::static_type_name

(C++ function), 55

:vital::algo::filter_tracks (C++ class), 55
:vital::algo::filter_tracks::filter (C++ function), 55
:vital::algo::filter_tracks::static_type_name (C++

vital::algo::dynamic_configuration::get_dynamic_configuratidmnction), 55

(C++ function), 46

(C++ function), 45

vital::algo::estimate_canonical_transform (C++ kwiver:

class), 46

kwiver:
:vital::algo::dynamic_configuration::set_configuratidawiver:

:vital::algo::formulate_query::formulate

:vital::algo::formulate_query (C++ class), 55
:vital::algo::formulate_query::check_configuration

(C++ function), 55
(C++
function), 55

vital::algo::estimate_canonical_transform::estimate kiwaneforvital::algo::formulate_query::set_configuration

(C++ function), 46

(C++ function), 55

vital::algo::estimate_canonical_transform::static_typevivemevital::algo::formulate_query::static_type_name

(C++ function), 47
vital::algo::estimate_essential_matrix
class), 47

:vital::algo::estimate_essential_matrix::estimate

(C++ function), 47, 48
vital::algo::estimate_essential_matrix::static_type_name
(C++ function), 48
vital::algo::estimate_fundamental_matrix
class), 48

vital::algo::estimate_fundamental_matrix::estimate kwiver:

(C++ function), 49

(C++ function), 49
vital::algo::estimate_homography (C++ class),
49
vital::algo::estimate_homography::estimate
(C++ function), 50

(C++ kwiver:
kwiver:

kwiver:

kwiver:
(C++ kwiver:

kwiver:

kwiver::vital::algo::initialize_cameras_landmarks

(C++ function), 55

:vital::algo::image_filter (C++ class), 13, 55
:vital::algo::image_filter::filter (C++ function),

13, 56

:vital::algo::image_filter::static_type_name (C++

function), 13, 56

:vital::algo::image_io (C++ class), 12, 56
:vital::algo::image_io::static_type_name

(C++
function), 12, 57

:vital::algo::image_object_detector (C++ class),

57

:vital::algo::estimate_fundamental_matrix::static_typewnamevital::algo::image_object_detector::detect (C++

function), 57

:vital::algo::image_object_detector::static_type_name

(C++ function), 57
(C++
class), 57

Index

113

KWIVER Documentation, Release 1

kwiver:

kwiver::

kwiver::

kwiver::

kwiver::
kwiver::

kwiver::

kwiver::
kwiver::

kwiver::

kwiver::
kwiver::

kwiver::

kwiver::
kwiver::

kwiver::

kwiver::

kwiver:

kwiver::

kwiver::

kwiver::

kwiver::

kwiver:

kwiver::

kwiver::

kwiver::

kwiver:

kwiver::

kwiver::

:vital::algo::initialize_cameras_landmarks::

:vital::algo::track_descriptor_set_output::close

(C++ type), 58
vital::algo::initialize_cameras_landmarks::
(C++ function), 58
vital::algo::initialize_cameras_landmarks::
(C++ function), 58
vital::algo::initialize_cameras_landmarks::
(C++ function), 58
vital::algo::match_features (C++ class), 58
vital::algo::match_features::match (C++ func-
tion), 59
vital::algo::match_features::static_type_name
(C++ function), 59
vital::algo::optimize_cameras (C++ class), 59
vital::algo::optimize_cameras::optimize ~ (C++
function), 59
vital::algo::optimize_cameras::static_type_name
(C++ function), 60
vital::algo::refine_detections (C++ class), 60
vital::algo::refine_detections::refine (C++ func-
tion), 60
vital::algo::refine_detections::static_type_name
(C++ function), 60
vital::algo::split_image (C++ class), 13, 60
vital::algo::split_image::check_configuration
(C++ function), 14, 61
vital::algo::split_image::set_configuration (C++
function), 14, 61
vital::algo::split_image::split (C++ function), 14,
61

:vital::algo::split_image::static_type_name (C++

function), 14, 61
vital::algo::track_descriptor_set_input
class), 61
vital::algo::track_descriptor_set_input::at_eof
(C++ function), 62
vital::algo::track_descriptor_set_input::close
(C++ function), 62
vital::algo::track_descriptor_set_input::open
(C++ function), 61

(C++

:vital::algo::track_descriptor_set_input::read_set

(C++ function), 62

(C++ function), 62

vital::algo::track_descriptor_set_input::use_stream kwiver:

(C++ function), 61
vital::algo::track_descriptor_set_output
class), 62

(C++ function), 63
vital::algo::track_descriptor_set_output::open

(C++ function), 62
vital::algo::track_descriptor_set_output::static_type_name

(C++ function), 63

callback kwiver:
initializekwiver:

set_callbkekiver:
kwiver:

kwiver:

kwiver:
kwiver:

kwiver:
kwiver:
kwiver:
kwiver:
kwiver:

kwiver:
kwiver:

kwiver:
kwiver:
kwiver:
kwiver:
kwiver:
kwiver:

:vital::algo::video_input:

kwiver:
kwiver:

:vital::algo::video_input:
:vital::algo::video_input:

kwiver:
kwiver:

:vital::algo::video_input:
:vital::algo::video_input:

kwiver:
vital::algo::track_descriptor_set_input::static_type_kameer:

(C++ kwiver:
kwiver:

kwiver:
kwiver:

kwiver:

:vital::algo::track_descriptor_set_output::use_stream

(C++ function), 63

:vital::algo::track_descriptor_set_output::write_set

(C++ function), 63

:vital::algo::track_features (C++ class), 63
:vital::algo::track_features::static_type_name
static_type_name (C++ function), 64
:vital::algo::track_features::track (C++ function),

63

:vital::algo::train_detector (C++ class), 64
:vital::algo::train_detector::static_type_name

(C++ function), 65

:vital::algo::train_detector::train_from_disk (C++

function), 64

:vital::algo::train_detector::train_from_memory

(C++ function), 64

:vital::algo::triangulate_landmarks (C++ class),

65

:vital::algo::triangulate_landmarks::static_type_name

(C++ function), 65

:vital::algo::triangulate_landmarks::triangulate

(C++ function), 65

:vital::algo::uuid_factory (C++ class), 65
:vital::algo::uuid_factory::static_type_name (C++

function), 65

:vital::algo::video_input (C++ class), 65
:vital::algo::video_input::close (C++ function), 67
:vital::algo::video_input::end_of_video (C++
function), 67
:vital::algo::video_input::frame_image (C++
function), 68
:vital::algo::video_input::frame_metadata (C++

function), 68

:get_implementation_capabilities
(C++ function), 68

:good (C++ function), 67
:next_frame (C++ func-

tion), 67

:open (C++ function), 66
:static_type_name (C++
function), 69

:vital::algorithm (C++ class), 32
:vital::algorithm::check_configuration (C++ func-

tion), 33

:vital::algorithm::check_nested_algo_configuration

(C++ function), 34

:vital::algorithm::get_configuration (C++ func-

tion), 33

:vital::algorithm::get_nested_algo_configuration

(C++ function), 33

:vital::algorithm::impl_name (C++ function), 33
:vital::algorithm::set_configuration (C++ func-

tion), 33

:vital::algorithm::set_nested_algo_configuration

114

Index

KWIVER Documentation, Release 1

kwiver::
kwiver::
kwiver::
kwiver::

kwiver::
kwiver::

kwiver::

kwiver::

kwiver::

kwiver:
kwiver::
kwiver::

kwiver::
kwiver:
kwiver::

kwiver::

kwiver::
kwiver::
kwiver::
kwiver::
kwiver::
kwiver::
kwiver::
kwiver::
kwiver::
kwiver::
kwiver::
kwiver::
kwiver::
kwiver::
kwiver::

kwiver::

kwiver::

kwiver::

kwiver::

kwiver::

kwiver::

kwiver::

(C++ function), 34

vital::algorithm::type_name (C++ function), 33
vital::algorithm_def (C++ class), 34
vital::algorithm_def::base_sptr (C++ type), 35
vital::algorithm_def::check_nested_algo_configuration

(C++ function), 36

vital::algorithm_def::create (C++ function), 35

vital::algorithm_def::get_nested_algo_configuratiorkwiver:

(C++ function), 35

vital::algorithm_def::registered_names

function), 35

vital::algorithm_def::set_nested_algo_configurationkwiver:

(C++ function), 35

(C++

vital::algorithm_def::type_name (C++ function),

35

vital::bounding_box::are

:vital::bounding_box (C++ class), 21

a (C++ function), 22

vital::bounding_box::bounding_box (C++ func-

tion), 21

vital::bounding_box::center (C++ function), 21

tion), 22
vital:
21
vital:
vital:
vital:
vital:
vital:
vital:
vital:
vital:
vital:
vital:
vital:
vital:
vital:
vital:
vital::camera_intrinsics::

(C++ function), 29
vital::camera_intrinsics:
tion), 29
vital::camera_intrinsics:
tion), 29
vital::camera_intrinsics:
29
vital::camera_intrinsics:
tion), 29
vital::camera_intrinsics:
29
vital::camera_intrinsics:
tion), 29
vital::camera_intrinsics:

:camera::as_matrix
:camera:
:camera
:camera:
:camera:
:camera:
:camera:
:camera:
:camera:

.camera:

:vital::bounding_box::height (C++ function), 22
vital::bounding_box::lower_right

(C++ func-

:bounding_box::upper_left (C++ function),

::bounding_box::width (C++ function), 22
:camera (C++ class), 27
:camera::~camera (C++ function), 28

(C++ function), 28

:center (C++ function), 28
::center_covar (C++ function), 28
:clone (C++ function), 28
:clone_look_at (C++ function), 28
:depth (C++ function), 28
:intrinsics (C++ function), 28
:project (C++ function), 28
:rotation (C++ function), 28
:translation (C++ function), 28
:camera_intrinsics (C++ class), 28

~camera_intrinsics

:as_matrix (C++ func-
:aspect_ratio (C++ func-
:clone (C++ function),
:dist_coeffs (C++ func-
:distort (C++ function),
:focal_length (C++ func-

:map (C++ function), 29

kwiver:

kwiver:
kwiver:

kwiver:

kwiver:

kwiver:

kwiver:
kwiver:

svital:

:vital:
:vital:
svital:
wvital:

:vital::camera_intrinsics

function), 29

:vital::camera_intrinsics
:vital::camera_intrinsics

tion), 29

:vital::camera_intrinsics

29

30
:covariance_::data
:covariance_:
:covariance_:

:covariance_:

= (C++ function), 31

kwiver::
kwiver::
kwiver:

kwiver:
kwiver:
kwiver:
kwiver:
kwiver:
kwiver:
kwiver:
kwiver:

:vital::covariance_:

svital:
svital:
:vital:
:vital:
:vital:
wvital:
svital:
:vital:

vital::covariance_:
vital::covariance_:

30

:descriptor:
:descriptor:
:descriptor:
:descriptor:
:descriptor:
:descriptor:

= (C++ function), 31

kwiver:
kwiver:
kwiver:
kwiver:
kwiver:

kwiver:
kwiver:
kwiver:

kwiver:

kwiver:
kwiver:

kwiver:

kwiver:

kwiver:

kwiver:

kwiver:
kwiver:

:vital::detected_object:
:vital::detected_object::

:vital::detected_object::
:vital::detected_object::
:vital::detected_object::
:vital::detected_object::

:vital::detected_object::
:vital::detected_object::

tion), 32

32

tion), 22

tion), 23
24
function), 22

tion), 23

function), 23

detected_object

::principal_point (C++

::skew (C++ function), 29
::undistort (C++ func-

::unmap (C++ function),

:vital::covariance_ (C++ class), 30
:covariance_::covariance_ (C++ function),

(C++ function), 30

:data_size (C++ member), 31
:matrix (C++ function), 30
:operator

:operator() (C++ function), 30
:operator= (C++ function), 30
:operator== (C++ function),

:covariance_::serialize (C++ function), 31
:descriptor (C++ class), 31

:~descriptor (C++ function), 31
:as_bytes (C++ function), 31
:as_double (C++ function), 31
:data_type (C++ function), 31
:num_bytes (C++ function), 31
:operator

:vital::descriptor::operator== (C++ function), 31
:vital::descriptor::size (C++ function), 31
:vital::descriptor_request (C++ class), 31
:vital::descriptor_set (C++ class), 31
:vital::descriptor_set::~descriptor_set (C++ func-

:vital::descriptor_set::descriptors (C++ function),
:vital::descriptor_set::size (C++ function), 32

:vital::detected_object (C++ class), 22

:vital::detected_object::bounding_box (C++ func-

:clone (C++ function), 22
confidence (C++ func-

descriptor (C++ function),

(C++

detector_name (C++ func-

index (C++ function), 23
mask (C++ function), 24
set_bounding_box (C++

Index

115

KWIVER Documentation, Release 1

kwiver:

kwiver::

kwiver::

kwiver::

kwiver::

kwiver:

kwiver::
kwiver::
kwiver::

kwiver::

kwiver::

kwiver:

kwiver::

kwiver::

kwiver::

kwiver::

kwiver:

kwiver::

kwiver::

kwiver::
kwiver::
kwiver::
kwiver::
kwiver::
kwiver::
kwiver::
kwiver::
kwiver::
kwiver::
kwiver::
kwiver::
kwiver::
kwiver::
kwiver::
kwiver::
kwiver::
kwiver::

:vital::detected_object

function), 23

vital::detected_object:

tion), 24

vital::detected_object:

function), 24

vital::detected_object:

23

vital::detected_object:

24

:vital::detected_object:

24
vital::detected_object

::set_confidence (C++
:set_descriptor (C++ func-
:set_detector_name (C++
:set_index (C++ function),
:set_mask (C++ function),

:set_type (C++ function),

:type (C++ function), 24

vital::detected_object_set (C++ class), 25
vital::detected_object_set::add (C++ function),

25, 26
vital::detected_object_set::
tion), 27
vital::detected_object_set::
25

:vital::detected_object_set::

25
vital::detected_object_set::
(C++ function), 25
vital::detected_object_set::
tion), 26
vital::detected_object_set::
27
vital::detected_object_set::
26

attributes (C++ func-
begin (C++ function),
clone (C++ function),
detected_object_set

empty (C++ func-
scale (C++ function),

select (C++ function),

:vital::detected_object_set::

set_attributes (C++
function), 27
vital::detected_object_set::
27
vital:
26
vital:
vital:
vital:
vital:
vital:
vital:
vital:
vital:
vital:
vital:
vital:
vital:
vital:
vital:
vital:
vital:
vital:
vital:

shift (C++ function),
:detected_object_set::size (C++ function),

:image (C++ class), 5, 17

:image::at (C++ function), 8, 19, 20
:image::copy_from (C++ function), 8, 20
:image::d_step (C++ function), 8, 19
:image::depth (C++ function), 8, 19
:image::first_pixel (C++ function), 7, 19
:image::h_step (C++ function), 8, 19
:image::height (C++ function), 7, 19
:image::image (C++ function), 6, 7, 17, 18
:image::is_contiguous (C++ function), 8, 19
:image::memory (C++ function), 7, 18, 19
:image::operator= (C++ function), 7, 18
:image::pixel_traits (C++ function), 8, 19
:image::set_size (C++ function), 8, 20
:image::size (C++ function), 7, 19
:image::w_step (C++ function), 8, 19
:image::width (C++ function), 7, 19
:image_container (C++ class), 11, 20

kwiver:
kwiver:
kwiver:
kwiver:
kwiver:
kwiver:
kwiver:
kwiver:
kwiver:
kwiver:
kwiver:
kwiver:
kwiver:
kwiver:
kwiver:
kwiver:
kwiver:
kwiver:
kwiver:
kwiver:
kwiver:
kwiver:
kwiver:

kwiver:

kwiver:

:vital::image_container:

:vital::image_container:

:vital::image_container:

:vital::image_container:

:vital::image_container:

function), 11, 20

20

:vital::image_container::

tion), 11, 20
tion), 11, 20

11, 20

:vital::image_container::

tion), 11, 21

20

:vital::image_container::

:~image_container (C++

:depth (C++ function), 11,

get_image (C++ func-

:get_metadata (C++ func-

:height (C++ function),

set_metadata (C++ func-

:size (C++ function), 11,

width (C++ function),

:vital::timestamp:
:vital::timestamp:
:vital::timestamp:

:vital::timestamp:

11, 20

:vital::rgb_color (C++ class), 29
:vital::rgb_color::rgb_color (C++ function), 30
:vital::rgb_color::serialize (C++ function), 30
:vital::timestamp (C++ class), 9
:vital::timestamp:
:vital::timestamp:

:get_frame (C++ function), 10
:get_time_seconds (C++ func-
tion), 10

:get_time_usec (C++ function),
9

‘has_valid_frame (C++ func-
tion), 9

:has_valid_time (C++ function),
9

:is_valid (C++ function), 9

:vital::timestamp:
:vital::timestamp:
:vital::timestamp:
:vital::timestamp:
:vital::timestamp:

:vital::timestamp:

:vital::timestamp:

function), 10
tion), 10

10

:pretty_print (C++ function), 11
:set_frame (C++ function), 10
:set_invalid (C++ function), 10
:set_time_domain_index (C++
:set_time_seconds (C++ func-

:set_time_usec (C++ function),

:timestamp (C++ function), 9

116

Index

	Introduction
	Architecture
	Vital Architecture
	Images
	Image Type
	Public Functions

	Time Stamp
	Public Functions

	Image Container Type
	Public Functions

	Image I/O Algorithm
	Public Functions
	Public Static Functions

	Image Filter Algorithm
	Public Functions
	Public Static Functions

	Split Image Algorithm
	Public Functions
	Public Static Functions

	Code Example

	Detections
	Vital Doxygen
	Types
	Other
	Image
	Public Functions
	Public Functions
	Detections
	Public Functions
	Public Functions
	Unnamed Group
	Public Functions
	Other
	Public Functions
	Public Functions
	Public Functions
	Public Functions
	Public Static Attributes
	Public Functions
	Public Functions

	Algorithms
	Base Types
	Public Functions
	Public Static Functions
	Public Types
	Public Functions
	Public Static Functions
	Functionality
	Public Functions
	Public Static Functions
	Public Types
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Types
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Functions
	Public Static Functions
	Public Static Functions
	Public Functions
	Public Static Functions

	Arrow Architecture
	Core
	Burnout
	Ceres
	Bundle Adjust Algorithm
	Public Functions
	Public Functions
	Public Members

	Optimize Cameras Algorithm
	Public Functions
	Public Functions
	Public Members

	Camera Position Smoothness Class
	Public Functions
	Public Static Functions

	Camera Limit Forward Motion Class
	Public Functions
	Public Members
	Public Static Functions

	Distortion Poly Radial Class
	Public Static Functions

	Distortion Poly Radial Tangential Class
	Public Static Functions
	Distortion Ratpoly Radial Tangential Class
	Public Static Functions

	Create Cost Func Factory

	Darknet
	FAQ

	Matlab
	OpenCV
	Algorithm Configuration
	Image I/O
	Split Image

	Proj4
	UUID
	VisCL
	VXL
	Algorithm Configuration
	Image I/O
	Split Image

	Sprokit Architecture
	Getting Started with sprokit
	Python Processes

	Process
	detected_object_output
	draw_detected_object_boxes
	Pipefile Usage
	Pipefile block
	Pipefile connections
	The following Input ports will need to be set
	The follwing Output ports are available from this process

	Class Description
	Public Functions

	frame_list_input
	Configuration
	Input Ports
	Output Ports

	Pipefile Usage
	Pipefile block
	Process connections
	The following Input ports will need to be set
	The following Output ports will need to be set

	Class Description

	image_object_detector
	image_viewer
	Configuration
	Input Ports
	Output Ports
	Pipefile Usage
	Pipefile block
	Pipefile connections
	The following Input ports will need to be set
	The follwing Output ports are available from this process

	Class Description

	image_writer

	How To Make a Process
	Plugins
	Pipeline design
	Overview
	Type Safety
	Introspection
	Thread safety
	Error Handling
	Control Flow
	Data Flow
	Ports
	Packets
	Pipeline Execution

	Pipeline Declaration Files
	Configuration Entries
	Configuration entry attributes

	Macro Substitution
	Macro Providers
	LOCAL Macro Provider
	ENV Macro Provider
	CONFIG Macro Provider
	SYSENV Macro Provider

	Block Specification
	Including Files
	Relativepath Modifier
	Configuration Section
	Examples

	Process definition Section
	Specification
	Examples
	Non-blocking processes
	Static port values
	Instrumenting Processes

	Connection Definition
	Examples

	Pipeline Edge Configuration
	Scheduler configuration
	Example

	Clusters Definition File
	config specifier
	Input mapping
	Output mapping

	Pipeline Example
	How To Make a Pipeline

	Tools
	Process Explorer
	Pipeline Runner

	Tutorials
	Fundamental Types and Algorithms
	Sprokit Pipelines
	Hello World
	Simple Image
	Simple Video
	Hough Detection
	Darknet Detection
	Setup
	Execution
	Image Detection
	Video Detection

	Image Stabilization

	Extending Kwiver
	Creating a new Algorithm
	Adding Algorithm Implementations
	How to configure an Algorithm
	How to Instantiate an Algorithm

	How to Wrap an Algorithm with a Process

	Indices and tables

