

Welcome to KWIVER’s documentation!

Contents:

	Introduction
	Video Analytics Toolchain

	SMQTK/C++ Bridge

	Installing Kwiver
	Install Dependencies

	Install Fletch

	Install Kwiver

Indices and tables

	Index

	Module Index

	Search Page

Introduction

The Kitware Image and Video Exploitation and Retrieval (KWIVER)
toolkit is a collection of software tools designed to tackle
difficult image and video analysis problems and other related
challenges. KWIVER is an ongoing effort to
transition technology developed over multiple years by Kitware’s
computer vision group to the open
source domain in order to further research, collaboration, and product
development.

KWIVER contains the following components.

	`VITAL`_

	A core library of abstractions and data types used by various KWIVER components.
Major elements of VITAL are:
- Basic data types used throughout Kwiver.
- Provides abstract algorithm interfaces for implementations in the ARROWS component.
- Configuration support library providing a common approach to run time configuration of the components.
- An OS abstraction layer that provides system services in a platform independent manner.
- flexible logging support that can interface to different logging back ends.
- General purpose plugin architecture.

	`Stream Processing Toolkit (sprokit)`_

	Sprokit is the “Stream Processing Toolkit”, a library aiming to
make processing a stream of data with various algorithms easy.
It supports divergent and convergent data flows with synchronization
between them, connection type checking, all with full, first-class
Python bindings.

Sprokit also contains a set of processes and example pipelines that
support basic operations such as image and video input and display,
wrappers for common algorithms.

	`ARROWS`_

	ARROWS is an open source C++ collection of algorithms
for making measurements from aerial video. Initial capability
focuses on estimating the camera flight trajectory and a sparse
3D point cloud of the scene.

Additionally, a separate repository, Fletch, is a CMake based project
that assists with acquiring and building common Open Source libraries
useful for developing video exploitation tools.

There is no single “correct”
way to build KWIVER. Rather, depending on your use case you will configure and build KWIVER
in ways that make the tools and libraries you require avaialable to you. In this documentation
we’ll detail and document some of the more common and useful usecases.

	Video Analytics Toolchain

	SMQTK/C++ Bridge
	Getting the Code
	Fletch

	KWIVER

	SMQTK

	CAFFE

	Setting up a Python Environment

	Building the Code
	Fletch

	KWIVER

	CAFFE

	SMQTK

	Testing the Code

	Using the SMQTK/C++ Bridge in Your Code

Video Analytics Toolchain

Coming Soon!

SMQTK/C++ Bridge

The SMQTK C++ Bridge is a mechanism that allows C++ based programs
to make calls to the Python based SMQTK project. In particular,
it allows a C++ program to call the SMQTK descriptor engine by
providing an image as input and receiving a feature vector in return.

The bridge is based on Kitware’s KWIVER project. In particular it
uses the data types and core services provided by KWIVER’s VITAL
project and the pipeline processing (including Python compute nodes)
provided by SMQTK’s Sprokit project. The Block Diagramm of the SMQTK/C++ Bridge shows
the structure of the solution.

[image: _images/smqtkcplusplusbridge.png]
Block Diagramm of the SMQTK/C++ Bridge

The KWIVER repository and its associated build framework takes care
of building VITAL and Sprokit once it’s properly configured. Also,
in order to build KWIVER, you must build some of the third party
dependencies maintained by Kitware’s Fletch project (a repository
that is used to manage the build of a variety of computer vision
and machine learning tools).

This document will help you configure Fletch and KWIVER so that you
can use them with SMQTK and Python. It will also discuss the
C++/SMQTK bridge and how you can integrate it into your projects.

The instructions assume that you will set up a directory structure
similar to the SMQTK/C++ Bridge Source Organization shown.

[image: _images/sourcestructure.png]
SMQTK/C++ Bridge Source Organization

These projects are interdependent, so you’ll want to fetch the
repositories and checkout the correct branch for all of them first.

Getting the Code

Fletch

In the Fletch directory:

git clone https://github.com/Kitware/fletch.git source
cd source
git checkout master

KWIVER

In the KWIVER directory:

git clone https://github.com/kitware/kwiver.git source
cd source
git checkout master

SMQTK

In the SMQTK directory:

git clone https://github.com/Kitware/SMQTK.git source
cd source
git checkout v0.2

CAFFE

In the CAFFE directory:

git clone https://github.com/BVLC/caffe.git source
cd source
git checkout rc2
./scripts/download_model_binary.py models/bvlc_reference_caffenet
./data/ilsvrc12/get_ilsvrc_aux.sh

For CAFFE, in addition to obtaining the source code, we’re fetching some pre-trained models that we can use.

Setting up a Python Environment

In order to use the SMQTK/C++ bridge, you must have a Python
environment on your system. We recommend installing the Miniconda [http://conda.pydata.org/miniconda.html]
environment from Continuum [https://www.continuum.io/] – an open source Python environment
that makes it very easy to set up Python for scientific computing.

Make sure that the Miniconda python command is the first one in
your PATH:

export PATH=~/.miniconda/bin:${PATH}

We will also need to create an SMQTK conda environment in which we will run SMQTK:

conda create -n smqtk --file smqtk/source/requirements.conda.txt
source activate smqtk
pip install -r smqtk/source/requirements.pip.txt
pip install scikit-image
pip install protobuf

Building the Code

Fletch

Note

It is important that only the Miniconda environment (and not
the smqtk environment is active when building fletch. Run source
deactivate to be sure.)

From your Fletch directory:

mkdir build
cd build
cmake -C ../source/sprokit/processes/examples/call_SMQTK_pipeline/fletch-precache.cmake ../source/

This will configure Fletch to build the projects that KWIVER needs to build properly for use with SMQTK/C++ bridge.

To actually build Fletch execute the command:

cmake --build .

(Note that there is period (.) at the end of that command)

KWIVER

Note

It is important that the SMQTK Miniconda environment
is active when building fletch. Run source
activate smqtk to be sure.

What follows are the steps required to build KIWVER to provide the SMQTK/C++ bridge

In the KWIVER directory:

source activate smqtk
mkdir build
cd build

To configure the build:

cmake -Dfletch_DIR:PATH=../../fletch/build/ -C ../source/sprokit/processes/examples/call_SMQTK_pipeline/kwiver-precache.cmake ../source/

Verify that the PYTHON specifications are correct (assuming you installed miniconda in ~/miniconda):

PYTHON_EXECUTABLE ~/miniconda/bin/python
PYTHON_INCLUDE_DIR ~/miniconda/include/python2.7
PYTHON_LIBRARY ~/miniconda/lib/libpython2.7.so

And finally, build KWIVER:

make
make install

CAFFE

One of the feature’s of SMQTK is that it can use a CAFFE based CNNN as a descriptor. In general, you simply need to build
CAFFE with it’s Python bindings turned on:

mkdir build
cd build
cmake -DBOOST_ROOT:PATH=../../fletch/build/install/ -DOpenCV_DIR:PATH=../../fletch/build/install/share/OpenCV/ ../source/
make
make install

SMQTK

From the SMQTK directory:

mkdir build
cd build
cmake ../source

Testing the Code

Set your PATH to include the new projects. The following commands will set the environment so the examples can be run:

source kwiver/build/install/setup_KWIVER.sh
source smqtk/build/setup_env.build.sh
export PYTHONPATH=${PWD}/caffe/build/install/python:${PYTHONPATH}

To test that the the SMQTK/C++ bridge is working, we will run the
SMQTK_Descriptor_test application. This application is an example
C++ application that accepts a configuration file to specify the
location of your CAFFE installation model, files and GPU configuration
and a single image or list of images and submit that image (or
images) to SMQTK to have CAFFE compute the descriptor. The application
does nothing with the descriptor other than print the first 50
elements. This is a sample program only. You may wish to read the
source code for the program in kwiver/source/examples/call_SMQTK_pipeline
to see how you can adapt this technique to your own programs.

To use the application, you’ll need to provide it with a configuration file that tells it what
descriptor to use.

Here is an example configuration file that uses SMQTK’s
CaffeDesriptorGenerator to run the ImageNet CNN and use the 7th
layer as a descriptor:

{
 "CaffeDescriptorGenerator": {
 "batch_size": 256,
 "data_layer": "data",
 "gpu_device_id": 0,
 "image_mean_filepath": "/path/to/caffe/source/data/ilsvrc12/imagenet_mean.binaryproto",
 "load_truncated_images": true,
 "network_is_bgr": true,
 "network_model_filepath": "/path/to/caffe/source/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel",
 "network_prototxt_filepath": "/path/to/caffe/source/models/bvlc_reference_caffenet/deploy.prototxt",
 "return_layer": "fc7",
 "use_gpu": false
 },
"type": "CaffeDescriptorGenerator"
}

The command to run the test application is as follows (all one line, run from the kwiver/build directory):

LD_PRELOAD=~/miniconda/envs/smqtk/lib/libpython2.7.so.1.0 ./examples/call_SMQTK_pipeline/SMQTK_Descriptor_test my-caffe-config ../source/examples/cat.jpg

Note

The “LD_PRELOAD” variable setting is required to make sure that sprokit does not try to use the system
python instead of the SMQTK python environment you created. We will be working to make this unecessary as soon as possible.

When the application runs, it will eventually print out lines that look like this (after many log messages):

Descriptor size: 4096
0 0 0 0 0 0 3.53588 0 0 0 0 3.3475 0 0 0 0 1.67483 0 0 0 0 0 0 0 0 7.86536 0

Which represents the first 50 elements of the returned feature
vector. If all of the elements are the value 0.223, then
something went wrong and the feature vector was not run

If you wish to use a different model, say AlexNet [https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet], make sure you run ./scripts/download_model_binary.py models/bvlc_alexnet in the
Caffe source directory and then you can create a different configuration file that specifies /path/to/caffe/source/models/bvlc_alexnet/bvlc_alexnet.caffemodel
for network_model_filepath and /path/to/caffe/source/models/bvlc_alexnet/deploy.prototxt for network_prototxt_filepath.

Using the SMQTK/C++ Bridge in Your Code

The C++ interface to SMQTK descriptors is through the SMQTK_Descriptor class as defined in the include file SMQTK_Descriptor.h.

The SMQTK descriptor API is built as part of kwiver and is available in the library libSMQTK_Descriptor.so.
You will need to add this to your build instructions as -lSMQTK_Descriptor or in an equivalent manner appropriate
for your build system.

The class provides a single method to apply the descriptor to an image and return the descriptor vector, which is described as follows:

std::vector< double > ExtractSMQTK(cv::Mat cv_img, std::string const& config_file);

	cv_img

	An image in OpenCV format

	config_file

	The name of the SMQTK descriptor configuration file in JSON format. See Testing the Code for details.

The ExtractSMQTK() method is synchronous in that it will return with the descriptor vector even though the descriptor calculation may be multi-threaded.

The source code for the call_SMQTK_pipeline provides an example of how to use this call in your own programs:

Include the file SMQTK_Descriptor.h in the source code to get the interface to the SMQTK_Descriptor class, as shown below:

#include "SMQTK_Descriptor.h"

The following two source statements implement and apply the descriptor:

kwiver::SMQTK_Descriptor des; // Create object
std::vector< double > results = des.ExtractSMQTK(img, file_name);

The inputs are the OpenCV format image and the name of the descriptor configuration file. The output is the descriptor vector of doubles.

A sample program is provided in the source file SMQTK_Descriptor_test.cxx
which serves as a test of the API and an example of how it is used.
The operation of this test program is discussed above.

Installing Kwiver

These instructions are designed to help build Kwiver on a fresh machine. They were written for and tested on Ubuntu 16.04 Desktop version. Other Linux machines will have similar directions, but some steps (particularly the dependency install) may not be totally identical.

Install Dependencies

Some of the dependencies required for Kwiver can be installed with one quick and easy instruction with no configuration required. Different Linux distributions may have different packages already installed, or may use a different package manager than apt, but even on Ubuntu this should help to provide a starting point.

sudo apt-get install git zlib1g-dev libcurl4-openssl-dev libexpat1-dev dh-autoreconf liblapack-dev libxt-dev

sudo apt-get build-dep libboost-all-dev qt5-default

Install CMAKE

The version of cmake you currently get with apt is too old to use for kwiver, so you need to do a manual install. Go to the cmake website, https://cmake.org/download, and download the appropriate binary distribution (for Ubuntu, this would be something like cmake-3.6.1-Linux-x86_64.sh, depending on version). Download the source code, cmake-3.6.1.tar.gz (or just download and use the installer for windows). To untar and build the source, use the following set of commands. Keep in mind that if you’re not using version 3.6.1, you’ll need to update the version number to match your download.

cd ~/Downloads

tar zxfv cmake-3.6.1.tar.gz

cd cmake-3.6.1

./bootstrap –system-curl –no-system-libs

make

sudo make install

sudo ln -s /usr/local/bin/cmake /bin/cmake

These instructions build the source code into a working executable, installs the executable into a personal directory, and then lets the operating system know where that directory is so it can find cmake in the future.

Install Fletch

Fletch is a CMake driven build that will help configure and install a series of component packages necessary for Kwiver, like Eigen and Boost. Navigate to the directory where you want to put your source code and builds. I personally like to use ~/Work and then set up a new directory for each repo. With all dependencies for Fletch installed in the last couple of steps, Fletch should build without any issues.

mkdir fletch

cd fletch

git clone https://github.com/kitware/fletch.git

mkdir build

cd build

cmake -Dfletch_ENABLE_ALL_PACKAGES:bool=on ../fletch

make

Install Kwiver

After Fletch is built, you should have everything necessary to build Kwiver. Navigate back to the directory you want to put Kwiver in (if you followed the directions above, the command to return is cd ../..). In the cmake step, make sure to fill in your Fletch build directory so Kwiver knows where to find its dependencies. For example, I would use cmake -Dfletch_DIR:path=/home/dave/Work/fletch/build ../kwiver.

mkdir kwiver

cd kwiver

git clone https://github.com/kitware/kwiver.git

mkdir build

cd build

cmake -Dfletch_DIR:path=<fletch_build_directory> ../kwiver

make

Index

Getting Started with sprokit

The central component of KWIVER is vital which supplies basic data
types and fundimental alrogithms. In addition, we use sprokit’s
pipelining facilities to manage, integrate and run many of KWIVER’s
modules and capabilities. To see what modules (called processes in
sprockit) are available, run the following command:

$ plugin_explorer --process -b

Here’s a typical list of modules (note that as KWIVER expands, this
list is likely to grow):

—- All process Factories

	Factories that create type “sprokit::process”

	
	Process type: frame_list_input Reads a list of image file names and generates stream of images and

	associated time stamps

Process type: stabilize_image Generate current-to-reference image homographies

Process type: detect_features Detect features in an image that will be used for stabilization

Process type: extract_descriptors Extract descriptors from detected features

Process type: feature_matcher Match extracted descriptors and detected features

Process type: compute_homography Compute a frame to frame homography based on tracks

Process type: compute_stereo_depth_map Compute a stereo depth map given two frames

Process type: draw_tracks Draw feature tracks on image

Process type: read_d_vector Read vector of doubles

Process type: refine_detections Refines detections for a given frame

Process type: image_object_detector Apply selected image object detector algorithm to incoming images.

Process type: image_filter Apply selected image filter algorithm to incoming images.

Process type: image_writer Write image to disk.

Process type: image_file_reader Reads an image file given the file name.

	Process type: detected_object_input Reads detected object sets from an input file. Detections read from the

	input file are grouped into sets for each image and individually
returned.

	Process type: detected_object_output Writes detected object sets to an output file. All detections are written

	to the same file.

	Process type: detected_object_filter Filters sets of detected objects using the detected_object_filter

	algorithm.

Process type: video_input Reads video files and produces sequential images with metadata per frame.

	Process type: draw_detected_object_set Draws border around detected objects in the set using the selected

	algorithm.

Process type: track_descriptor_input Reads track descriptor sets from an input file.

	Process type: track_descriptor_output Writes track descriptor sets to an output file. All descriptors are

	written to the same file.

Process type: image_viewer Display input image and delay

Process type: draw_detected_object_boxes Draw detected object boxes on images.

Process type: collate Collates data from multiple worker processes

Process type: distribute Distributes data to multiple worker processes

Process type: pass Pass a data stream through

Process type: sink Ignores incoming data

Process type: any_source A process which creates arbitrary data

Process type: const A process wth a const flag

Process type: const_number Outputs a constant number

Process type: data_dependent A process with a data dependent type

Process type: duplicate A process which duplicates input

Process type: expect A process which expects some conditions

Process type: feedback A process which feeds data into itself

Process type: flow_dependent A process with a flow dependent type

Process type: multiplication Multiplies numbers

Process type: multiplier_cluster A constant factor multiplier cluster

Process type: mutate A process with a mutable flag

Process type: numbers Outputs numbers within a range

Process type: orphan_cluster A dummy cluster

Process type: orphan A dummy process

Process type: print_number Print numbers to a file

Process type: shared A process with the shared flag

Process type: skip A process which skips input data

Process type: tagged_flow_dependent A process with a tagged flow dependent types

Process type: take_number Print numbers to a file

Process type: take_string Print strings to a file

Process type: tunable A process with a tunable parameter

	Process type: input_adapter Source process for pipeline. Pushes data items into pipeline ports. Ports

	are dynamically created as needed based on connections specified in the
pipeline file.

	Process type: output_adapter Sink process for pipeline. Accepts data items from pipeline ports. Ports

	are dynamically created as needed based on connections specified in the
pipeline file.

	Process type: template Description of process. Make as long as necessary to fully explain what

	the process does and how to use it. Explain specific algorithms used,
etc.

Process type: kw_archive_writer Writes kw archives

Process type: test_python_process A test Python process

Process type: pyprint_number A Python process which prints numbers

This is the list of modules that can be included in a Sprokit
pipeline. We’re going to use the numbers module and the the
print_number module to create a very simple pipeline. To learn more
about the numbers module we’ll again use plugin_explorer this time
to get details on a particular module. For numbers we’ll use the
following command:

$ plugin_explorer --process --type numbers -d --config

Factories that create type "sprokit::process"

 Process type: numbers
 Description: Outputs numbers within a range

 Properties: _no_reentrant,
 -- Configuration --
 Name : end
 Default : 100
 Description: The value to stop counting at.
 Tunable : no

 Name : start
 Default : 0
 Description: The value to start counting at.
 Tunable : no

 Input ports:
 Output ports:
 Name : number
 Type : integer
 Flags : _required,
 Description: Where the numbers will be available.

And for print_number, we’ll use:

$ plugin_explorer --process --type print_number -d --config

Factories that create type "sprokit::process"

 Process type: print_number
 Description: Print numbers to a file

 Properties: _no_reentrant,
 -- Configuration --
 Name : output
 Default :
 Description: The path of the file to output to.
 Tunable : no

 Input ports:
 Name : number
 Type : integer
 Flags : _required,
 Description: Where numbers are read from.

 Output ports:

The output of these commands tells us enough about each process to
construct a Sprockit ”.pipe” file that defines a processing pipeline.
In particular we’ll need to know how to configure each process (the
“Configuration”) and how they can be hooked together (the input and
output “Ports”).

KWIVER comes with a sample
sprokit/pipelines/number_flow.pipe
file that configures and connects the pipeline so that the numbers
process will generate a set of integers from 1 to 99 and the
print_number process will write those to a file called
numbers.txt. Of particular interest is the section at the end of
the file that actually “hooks up” the pipeline.

To run the pipeline, we’ll use the Sprokit pipeline_runner command:

$ pipeline_runner -p </path/to/kwiver/source>/sprokit/pipelines/number_flow.pipe

After the pipeline completes, you should find a file, numbers.txt, in your working directory.

Python Processes

One of KWIVER’s great strengths (as provided by sprokit) is the
ability to create hybrid pipelines which combine C++ and Python
processes in the same pipeline. This greatly facilitates prototyping
complex processing pipelines. To test this out we’ll still use the
numbers process, but we’ll use a Python version of the
print_number process called kw_print_number_process the code for
which can be seen in
sprokit/processes/python/kw_print_number_process.py.
As usual, we can lean about this process with the following command:

$ plugin_explorer --process --type kw_print_number_process -d --config

Process type: kw_print_number_process
 Description: A Simple Kwiver Test Process
 Properties: _no_reentrant, _python
Configuration:
 Name : output
 Default : .
 Description: The path for the output file.
 Tunable : no

Input ports:
 Name : input
 Type : integer
 Flags : _required
 Description: Where numbers are read from.

Output ports:

As you can see, the process is very similar to the C++ print_number
process. As a result, the [”.pipe” file is very
similar](sprokit/pipelines/number_flow_python.pipe).

In order to get around limitations imposed by the Python Global
Interpreter Lock, we’ll use a different Sprokit scheduler for this
pipeline. The pythread_per_process scheduler which does essentially
what it says: it creates a Python thread for every process in the
pipeline:

pipeline_runner -S pythread_per_process -p </path/to/kwiver/source>/sprokit/pipelines/number_flow_python.pipe>

As with the previous pipeline, the numbers will be written to an output file, this time numbers_from_python.txt

 _static/minus.png

_static/comment.png

_static/comment-bright.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/down.png

_images/smqtkcplusplusbridge.png
C/C++ Application

SMQTK C/C++ Library (libSMQTK_Descriptor)

Descriptor API (e.g. Extract_SMQTK(...))

SproKit

SMQTK Pipeline Node

SMQTK

_images/sourcestructure.png
fletch

source source

_static/comment-close.png

_static/up.png

nav.xhtml

 Table of Contents

 		Welcome to KWIVER's documentation!

 		Introduction

 		Video Analytics Toolchain

 		SMQTK/C++ Bridge

 		Getting the Code

 		Setting up a Python Environment

 		Building the Code

 		Testing the Code

 		Using the SMQTK/C++ Bridge in Your Code

 		Installing Kwiver

 		Install Dependencies

 		Install CMAKE

 		Install Fletch

 		Install Kwiver

_static/up-pressed.png

